• Title/Summary/Keyword: MALDI-TOF Mass

Search Result 271, Processing Time 0.022 seconds

Effect of Cationization Agent Concentration on Glycan Detection Using MALDI TOF-MS

  • Kim, Inyoung;Shin, Dongwon;Paek, Jihyun;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • v.8 no.1
    • /
    • pp.14-17
    • /
    • 2017
  • The effect of cationization agent concentration on glycan detection via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was investigated using $Na^+$ ions in the form of NaCl as the cationization agent. NaCl solution concentrations ranging from 1 mM to 1 M were investigated. Glycans from ovalbumin were mixed with the cationization agent solution and the 2,5-dihydroxybenzoic acid (2,5-DHB) matrix solution in a volume ratio of 1:1:1. The resulting mixture was loaded onto the MALDI plate. Two MALDI-TOF MS instruments (Voyager DE-STR MALDI-TOF MS and Tinkerbell RT MALDI-TOF MS) were used for detection of glycans. The best detection, in terms of the number of identified glycans, the peak intensity, and the signal-to-noise (S/N) ratio, was obtained with NaCl concentrations of 0.01-0.1 M for both MALDI-TOF MS instruments.

Applications of MALDI-TOF Mass Spectrometry in Clinical Microbiology

  • Shin, Kyeong Seob;Yum, Jonghwa
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.145-156
    • /
    • 2022
  • Over the past few decades, few technologies have had a greater impact on clinical microbiology laboratories than matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS). The MALDI-TOF MS is a fast, accurate, and low-cost and efficient method of microbial identification. This technology generates characteristic mass spectral fingerprints that is a unique signature for each microorganism, making it an ideal method for accurate identification at the genus and species levels of both bacterial and fastidious microorganism such as anaerobes, mycobacterium and fungi etc. In addition, MALDI-TOF MS has been successfully used in microbial subtyping and susceptibility tests such as determination of resistance genes. In this study, the authors summarized the application of MALDI-TOF MS in clinical microbiology and clinical research and explored the future of MALDI-TOF MS.

Free Radical Initiated Peptide Sequencing Using MALDI-TOF/TOF Mass Spectrometry

  • Song, Insu;Lee, Jae-ung;Baek, Jaehyeon;Cha, Sangwon;Han, Sang Yun;Oh, Han Bin
    • Mass Spectrometry Letters
    • /
    • v.9 no.2
    • /
    • pp.56-60
    • /
    • 2018
  • In this study, matrix-assisted laser desorption/ionization (MALDI) was applied to the TEMPO-assisted FRIPS for the first time. We found that 3-HPA is the optimal matrix for the analysis of p-TEMPO-Bz-Sc-peptides, which gives minimal precursor fragmentations. MALDI-TOF/TOF experiments on p-TEMPO-Bz-Sc-peptides yielded mainly $[a_n+H]^+$, $[z_n+H]^+$, and $[y_n]^+-type$ products, indicating that radical-driven peptide fragmentation occurs in MALDI-TOF/TOF-MS.

Analysis of Entamoeba histolytica Membrane via LC-MALDI-TOF/TOF

  • Ujang, Jorim Anak;Noordin, Rahmah;Othman, Nurulhasanah
    • Mass Spectrometry Letters
    • /
    • v.10 no.3
    • /
    • pp.84-87
    • /
    • 2019
  • Liquid chromatography mass spectrometry is widely employed in proteomics studies. One of such instruments is the Liquid Chromatography (LC)-Matrix-assisted laser desorption ionisation (MALDI)-Time of flight (TOF) or LC-MALDI-TOF/TOF. In this study, this instrument was used to identify the membrane proteins of a protozoan parasite namely Entamoeba histolytica. It causes amoebiasis in human. The E. histolytica trophozoites were cultured prior to the membrane protein extraction using the conventional method, $ProteoPrep^{(R)}$ and $ProteoExtract^{(R)}$ kits. Then, the membrane protein extracts were trypticdigested and analysed by LC-MALDI-TOF/TOF. Approximately, 194 proteins were identified and 27.8% (54) were predicted as membrane proteins having 1 to 15 transmembrane regions and signal peptides by combining all three extraction methods. Also, this study has discovered 3 unique proteins as compared to our previous study which merit further investigation.

Reliable Identification of Bacillus cereus Group Species Using Low Mass Biomarkers by MALDI-TOF MS

  • Ha, Miyoung;Jo, Hyeon-Ju;Choi, Eun-Kyeong;Kim, Yangsun;Kim, Junsung;Cho, Hyeon-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.887-896
    • /
    • 2019
  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based pathogen identification relies on the ribosomal protein spectra provided in the proprietary database. Although these mass spectra can discern various pathogens at species level, the spectra-based method still has limitations in identifying closely-related microbial species. In this study, to overcome the limits of the current MALDI-TOF MS identification method using ribosomal protein spectra, we applied MALDI-TOF MS of low-mass profiling to the identification of two genetically related Bacillus species, the food-borne pathogen Bacillus cereus, and the insect pathogen Bacillus thuringiensis. The mass spectra of small molecules from 17 type strains of two bacilli were compared to the morphological, biochemical, and genetic identification methods of pathogens. The specific mass peaks in the low-mass range (m/z 500-3,000) successfully identified various closely-related strains belonging to these two reference species. The intensity profiles of the MALDI-TOF mass spectra clearly revealed the differences between the two genetically-related species at strain level. We suggest that small molecules with low molecular weight, 714.2 and 906.5 m/z can be potential mass biomarkers used for reliable identification of B. cereus and B. thuringiensis.

Construction of an Improved Tandem Time-of-flight Mass Spectrometer for Photodissociation of Ions Generated by Matrix-assisted Laser Desorption Ionization (MALDI)

  • Moon, Jeong-Hee;Yoon, So-Hee;Kim, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.763-768
    • /
    • 2005
  • An improved tandem time-of-flight (TOF) mass spectrometer for the photodissociation (PD) study of ions generated by matrix-assisted laser desorption ionization (MALDI), MALDI-TOF-PD-TOF, has been designed and constructed. Recording a full spectrum with better than unit mass resolution even in low mass range has been achieved without reflectron voltage stepping which was needed in the previous version. Other aspects of the improvement, such as those in the data system which now allow 10-100 times faster spectral acquisition than with the previous instrument, are described. Rationale for the ideas which have led to the improvements is presented also.

Analysis of nonionic surfactants and silicone polymers in cosmetic products using Matrix - assisted Laser Desorption/Ionization Time-of- flight Mass Spectrometry

  • Lee, Myoung-Hee;Lee, Gae-Ho;Yoo, Jong-Shin
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.480-507
    • /
    • 2003
  • A rapid and efficient method for analyzing the nonionic surfactants and silicone polymers, which control the shape and characteristics of cosmetic products and give influence on product quality, has been developed using Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI- TOF IMS). The MALDI-TOF/MS could easily and effectively determine the molecular weight distribution and monomer units of nonionic surfactants. As a result, creating a library of mass spectrum data of surfactants used in cosmetic products using MALDI-TOF/MS and analyzing surfactants extracted from the products may become a useful method for detailed structural characterization of the surfactants. Furthermore, the MALDI-TOF/MS analysis was effective in obtaining the spectrum of silicone polymers from which the molecular weight distribution could be determined. The repetition units and structural data could also be obtained through molecular mass peaks. Additionally, the monomer ratio and terminal groups as properties of silicone copolymers could be determined

  • PDF

Development of mass spectrometric analysis of $\alpha_1$(I) and $\alpha_2$(I) chain Collagen ($\alpha_1$(I)및 $\alpha_2$(I)사슬 콜라겐의 질량분석법 개발 연구)

  • Kim, Kwang-Yon;Cho, Seon-Young;Lee, Sang-Han;Nnm, Hae-Seon;Kim, Sung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.134-143
    • /
    • 2005
  • Collagen is the important structural proteins in mammals with various peptide composition and cross-linkings. The direct analysis of collagen protein was not suitable because of its structural complexity and diversity. In this study, we suggest the simple way of collagen analysis by introducing matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) to identify the collagen and its trypsin-digested fragments, and by subsequent time-of-flight tandem mass spectrometry(Q-TOF MS/MS) to analyze the amino acid sequences of identified fragments. Using the collagen samples extracted from the tail of mouse, 10 separated bands were found in SDS-PAGE, and the masses of most bands could be more finely determined by MALDI-TOF MS. When each 10 separated proteins was tryptic digested and introduced to MALDI-TOF, the Gly1056-Arg1073 fragment from $\alpha_1$-chain was identified in four bands, and the Gly1056-Arg1073 fragment from $\alpha_2$-chain was identified in five bands, both in type I collagen. Although few fragments were found because of the cross-linkings left in digested collagen sample, it could be determined that the type I collagen existed at least in 7 separated bands. When the amino acid sequences of two identified fragments were analyzed by Q-TOF MS/MS, both sequences were identical with those determined by MALDI-TOF MS. It suggested that the two peaks in MALDI-TOF MS caused by the fragments identified in this work could be used as the fingerprint to simply identify type I collagen in protein samples.

  • PDF

Mass spectrometry based on nanomaterials (나노물질을 이용한 질량분석 기술 개발동향)

  • Park, Jong-Min;Noh, Joo-Yoon;Kim, Moon-Ju;Pyun, Jae-Chul
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.249-269
    • /
    • 2018
  • In conventional MALDI-TOF mass spectrometry, analyte molecules are known to be ionized by mixing with organic matrix molecules. As the organic matrix molecules are made into small fragments, they generate unreproducible mass peaks such that MALDI-TOF mass spectrometry is nearly impossible in the low mass-to-charge (m/z) range (< 1000). Additionally, the dried sample mixed with matrix were made as inhomogeneous crystal on metal plate. When the laser radiation was made on the sample crystal, the amount of generated sample ion was observed to be quite different according to the radiation point. Therefore, the quantitative analysis was very difficult even for the sample spots at the same concentration for the conventional MALDI-TOF mass spectrometry. In this work, we present laser desorption/ionization (LDI) mass spectrometry based on solid-matrices for the quantitative analysis of small molecules in the low m/z range by using MALDI-TOF mass spectrometry: (1) Carbon based nanostructures; (2) Semiconductor based nanomaterials; (3) Metal based nanostructures.

Analysis of Polymer Characteristics Using Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry (말디토프 질량분석을 이용한 고분자의 특성분석)

  • Kang, Min-Jung;Seong, Yunseo;Kim, Moon-Ju;Kim, Myung Soo;Pyun, Jae-Chul
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.263-271
    • /
    • 2017
  • The application of mass spectrometry to polymer science has rapidly increased since the development of MALDI-TOF MS. This review summarizes current polymer analysis methods using MALDI-TOF MS, which has been extensively applied to analyze the average molecular weight of biopolymers and synthetic polymers. Polymer sequences have also been analyzed to reveal the structures and composition of monomers. In addition, the analysis of unknown end-groups and the determination of polymer concentrations are very important applications. Hyphenated techniques using MALDI-tandem MS have been used for the analysis of fragmentation patterns and end-groups, and also the combination of SEC and MALDI-TOF MS techniques is recommended for the analysis of complex polymers. Moreover, MALDI-TOF MS has been utilized for the observation of polymer degradation. Ion mobility MS, TOF-SIMS, and MALDI-TOF-imaging are also emerging technologies for polymer characterization because of their ability to automatically fractionate and localize polymer samples. The determination of polymer characteristics and their relation to the material properties is one of the most important demands for polymer scientists; the development of software and instrument for higher molecular mass range (> 100 kD) will increase the applications of MALDI-TOF MS for polymer scientists.