References
- Siuzdak, G. Mass spectrometry for biotechnology. Elsevier (1996).
- Glish, G. L., & Vachet, R. W. The basics of mass spectrometry in the twenty-first century. Nat. Rev. Drug Discov., 2, 140 (2003). https://doi.org/10.1038/nrd1011
- Siuzdak, G. An introduction to mass spectrometry ionization: An excerpt from The Expanding Role of Mass Spectrometry in Biotechnology, J. Lab. Autom., 9, 50-63 (2004). https://doi.org/10.1016/j.jala.2004.01.004
- Schrauzer, G. N., & Guth, T. D. Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc., 99, 7189-7193 (1977). https://doi.org/10.1021/ja00464a015
-
Linsebigler, A. L., Lu, G., & Yates Jr, J. T. Photocatalysis on
$TiO_2$ surfaces: principles, mechanisms, and selected results. Chem. Rev., 95, 735-758 (1995). https://doi.org/10.1021/cr00035a013 - Wei, J., Buriak, J. M., & Siuzdak, G. Desorption-ionization mass spectrometry on porous silicon. Nature, 399, 243 (1999). https://doi.org/10.1038/20400
- Kang, M. J., Pyun, J. C., Lee, J. C., Choi, Y. J., Park, J. H., Park, J. G., & Choi, H. J. Nanowireassisted laser desorption and ionization mass spectrometry for quantitative analysis of small molecules. Rapid Commun. Mass spectrom., 19, 3166-3170 (2005). https://doi.org/10.1002/rcm.2187
- Kim, J. I., Park, J. M., Kang, M. J., & Pyun, J. C. Parylene-matrix chip for small molecule analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass spectrom., 28, 274-280 (2014). https://doi.org/10.1002/rcm.6782
- Park, J. M., Kim, J. I., Song, H. W., Noh, J. Y., Kang, M. J., & Pyun, J. C. Highly sensitive bacterial susceptibility test against penicillin using parylenematrix chip. Biosens. Bioelectron., 71, 306-312 (2015). https://doi.org/10.1016/j.bios.2015.04.059
-
Park, J. M., Kim, J. I., Noh, J. Y., Kim, M., Kang, M. J., & Pyun, J. C. Hypersensitive antibiotic susceptibility test based on a
${\beta}$ -lactamase assay with a parylene-matrix chip. Enzyme Microb. Technol., 97, 90-96 (2017). https://doi.org/10.1016/j.enzmictec.2016.11.008 - Kim, J. I., Park, J. M., Noh, J. Y., Kang, M. J., & Pyun, J. C. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of small volatile molecules using a parylene-matrix chip. Rapid Commun. Mass spectrom., 28, 2301-2306 (2014). https://doi.org/10.1002/rcm.7025
-
Kim, J. I., Ryu, S. Y., Park, J. M., Noh, J. Y., Kang, M. J., Kwak, S. Y., & Pyun, J. C. Nylon nanoweb with
$TiO_2$ nanoparticles as a solid matrix for matrixassisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass spectrom., 28, 2427-2436 (2014). https://doi.org/10.1002/rcm.7036 -
Kim, J. I., Park, J. M., Hwang, S. J., Kang, M. J., & Pyun, J. C. Top-down synthesized
$TiO_2$ nanowires as a solid matrix for surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry. Anal. Chim. Acta, 836, 53-60 (2014). https://doi.org/10.1016/j.aca.2014.05.041 -
Kim, J. I., Park, J. M., Noh, J. Y., Hwang, S. J., Kang, M. J., & Pyun, J. C. Analysis of benzylpenicillin in milk using MALDI-TOF mass spectrometry with top-down synthesized
$TiO_2$ nanowires as the solid matrix. Chemosphere, 143, 64-70 (2016). https://doi.org/10.1016/j.chemosphere.2015.04.002 - Park, J. M., Jung, H. W., Chang, Y. W., Kim, H. S., Kang, M. J., & Pyun, J. C. Chemiluminescence lateral flow immunoassay based on Pt nanoparticle with peroxidase activity. Anal. Chim. Acta, 853, 360-367 (2015). https://doi.org/10.1016/j.aca.2014.10.011
- Wang, J., Liu, Q., Liang, Y., & Jiang, G. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal. Bioanal. Chem., 408, 2861-2873 (2016). https://doi.org/10.1007/s00216-015-9255-4
- Kong, X., & Huang, Y. Applications of graphene in mass spectrometry. J. Nanosci. Nanotechnol, 14, 4719-4732 (2014). https://doi.org/10.1166/jnn.2014.9503
- Dong, X., Cheng, J., Li, J., & Wang, Y. Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal. Chem., 82, 6208-6214 (2010). https://doi.org/10.1021/ac101022m
- Lu, M., Lai, Y., Chen, G., & Cai, Z. Matrix interference-free method for the analysis of small molecules by using negative ion laser desorption/ionization on graphene flakes. Anal. Chem., 83, 3161-3169 (2011). https://doi.org/10.1021/ac2002559
- Lu, M., Lai, Y., Chen, G., & Cai, Z. Laser desorption/ionization on the layer of graphene nanoparticles coupled with mass spectrometry for characterization of polymers. Chem. Comm., 47, 12807-12809 (2011). https://doi.org/10.1039/c1cc15592j
- Tang, L. A. L., Wang, J., & Loh, K. P. Graphenebased SELDI probe with ultrahigh extraction and sensitivity for DNA oligomer. J. Am. Chem. Soc., 132, 10976-10977 (2010). https://doi.org/10.1021/ja104017y
- Liu, Y., Liu, J., Yin, P., Gao, M., Deng, C., & Zhang, X. High throughput identification of components from traditional Chinese medicine herbs by utilizing graphene or graphene oxide as MALDI-TOF-MS matrix. J. Mass spectrom., 46, 804-815 (2011). https://doi.org/10.1002/jms.1952
- Liu, Y., Liu, J., Deng, C., & Zhang, X. Graphene and graphene oxide: two ideal choices for the enrichment and ionization of long-chain fatty acids free from matrix-assisted laser desorption/ionization matrix interference. Rapid Commun. Mass spectrom., 25, 3223-3234 (2011). https://doi.org/10.1002/rcm.5218
- Zhou, X., Wei, Y., He, Q., Boey, F., Zhang, Q., & Zhang, H. Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chem. Comm., 46, 6974-6976 (2010). https://doi.org/10.1039/c0cc01681k
- Sunner, J., Dratz, E., & Chen, Y. C. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem., 67, 4335-4342 (1995). https://doi.org/10.1021/ac00119a021
- Chen, Y. C., & Wu, J. Y. Analysis of small organics on planar silica surfaces using surface-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass spectrom., 15, 1899-1903 (2001). https://doi.org/10.1002/rcm.451
- Xu, S., Li, Y., Zou, H., Qiu, J., Guo, Z., & Guo, B. Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem., 75, 6191-6195 (2003). https://doi.org/10.1021/ac0345695
- Lee, J., Kim, Y. K., & Min, D. H. Laser desorption/ionization mass spectrometric assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films. J. Am. Chem. Soc., 132, 14714-14717 (2010). https://doi.org/10.1021/ja106276j
- Gholipour, Y., Giudicessi, S. L., Nonami, H., & Erra-Balsells, R. Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues. Anal. Chem., 82, 5518-5526 (2010). https://doi.org/10.1021/ac1003129
- Najam-ul-Haq, M., Rainer, M., Huck, C. W., Hausberger, P., Kraushaar, H., & Bonn, G. K. Nanostructured diamond-like carbon on digital versatile disc as a matrix-free target for laser desorption/ionization mass spectrometry. Anal. Chem., 80, 7467-7472 (2008). https://doi.org/10.1021/ac801190e
- Mills, A., & Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol., A: Chemistry, 108, 1-35 (1997). https://doi.org/10.1016/S1010-6030(97)00118-4
- Kruse, R. A., Rubakhin, S. S., Romanova, E. V., Bohn, P. W., & Sweedler, J. V. Direct assay of Aplysia tissues and cells with laser desorption/ionization mass spectrometry on porous silicon. J. Mass spectrom., 36, 1317-1322 (2001). https://doi.org/10.1002/jms.237
- Muck, A., Stelzner, T., Hubner, U., Christiansen, S., & Svatos, A. Lithographically patterned silicon nanowire arrays for matrix free LDI-TOF/MS analysis of lipids. Lab on a Chip, 10, 320-325 (2010). https://doi.org/10.1039/B913212K
- Chen, C. T., & Chen, Y. C. Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun. Mass spectrom., 18, 1956-1964 (2004). https://doi.org/10.1002/rcm.1572
- Lee, K. H., Chiang, C. K., Lin, Z. H., & Chang, H. T. Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices. Rapid Commun. Mass spectrom., 21, 2023-2030 (2007). https://doi.org/10.1002/rcm.3058
- Watanabe, T., Kawasaki, H., Yonezawa, T., & Arakawa, R. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. J. Mass spectrom., 43, 1063-1071 (2008). https://doi.org/10.1002/jms.1385
- Grechnikov, A. A., Georgieva, V. B., Alimpiev, S. S., Borodkov, A. S., Nikiforov, S. M., Simanovsky, Y. O., & Angelov, O. I. Investigation of thin ZnO layers in view of laser desorption-ionization. In J. Phys., 223, 12038 (2010).
- Kailasa, S. K., Kiran, K., & Wu, H.-F. Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem., 80, 9681-9688 (2008). https://doi.org/10.1021/ac8015664
-
Kailasa, S. K., & Wu, H.-F. Interference free detection for small molecules: Probing the
$Mn^{2+}$ -doped effect and cysteine capped effect on the ZnS nanoparticles for coccidiostats and peptide analysis in SALDI-TOF MS. Analyst, 135, 1115-1123 (2010). https://doi.org/10.1039/b919359f - Ke, Y., Kailasa, S. K., Wu, H.-F., & Chen, Z.-Y. High resolution detection of high mass proteins up to 80,000 Da via multifunctional CdS quantum dots in laser desorption/ionization mass spectrometry. Talanta, 83, 178-184 (2010). https://doi.org/10.1016/j.talanta.2010.09.003
- Shrivas, K., Kailasa, S. K., & Wu, H. F. Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS. Proteomics, 9, 2656-2667 (2009). https://doi.org/10.1002/pmic.200800772
- Sato, H., Nemoto, A., Yamamoto, A., & Tao, H. Surface cleaning of germanium nanodot ionization substrate for surface-assisted laser desorption/ ionization mass spectrometry. Rapid Commun. Mass spectrom., 23, 603-610 (2009). https://doi.org/10.1002/rcm.3916
- Brongersma, M. L., Halas, N. J., & Nordlander, P. Plasmon-induced hot carrier science and technology, Nat. Nanotechnol., 10, 25-34 (2015). https://doi.org/10.1038/nnano.2014.311
- Hinman, S. S., Chen, C. Y., Duanb, J., & Cheng, Q. Calcinated gold nanoparticle arrays for on-chip, multiplexed and matrix-free mass spectrometric analysis of peptides and small molecules, Nanoscale, 8, 1655-1675 (2016).
- Misawa, M., & Takahashi, J. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations, Nanomedicine: NBM, 7, 604-614 (2011). https://doi.org/10.1016/j.nano.2011.01.014
- Kawasaki, H., Sugitani, T., Watanabe, T., Yonezawa, T., Moriwaki, H., & Arakawa, R. Layer-by-Layer Self-Assembled Multilayer Films of Gold Nanoparticles for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry, Anal. Chem., 80, 7524-7533 (2008). https://doi.org/10.1021/ac800789t
- Nayak, R., & Knapp, D. R. Matrix-Free LDI Mass Spectrometry Platform using Patterned Nanostructured Gold Thin Film, Anal. Chem., 82, 7772-7778 (2010). https://doi.org/10.1021/ac1017277
- Castellana, E. T., Gamez, R. C., Gomez, M. E., & Russel, D. H. Longitudinal Surface Plasmon Resonance Based Gold Nanorod Biosensors for Mass Spectrometry, Langmuir, 26, 6066-6070 (2010). https://doi.org/10.1021/la904467b
- Yonezawa, T., Kawasaki, H., Tarui, A., Watanabe, T., Arakawa, R., Shimada, T., & Mafune, F. Detailed Investigation on the Possibility of Nanoparticles of Various Metal Elements for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry, Anal. Sci., 25, 339-346 (2009). https://doi.org/10.2116/analsci.25.339
- Su, C. L., & Tseng, W. L. Gold Nanoparticles as Assisted Matrix for Determining Neutral Small Carbohydrates through Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, Anal. Chem., 79, 1626-1633 (2007). https://doi.org/10.1021/ac061747w
- Spencer, M. T., Furutani, H., Oldenburg, S. J., Darlington, T. K., & Prather, K. A. Gold Nanoparticles as a Matrix for Visible-Wavelength Single-Particle Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Small Biomolecules, J. Phys. Chem. C, 112, 4083-4090 (2008). https://doi.org/10.1021/jp076688k
- Kawasaki, H., Yonezawa, T., Watanabe, T., & Arakawa, R. Platinum Nanoflowers for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry of Biomolecules, J. Phys. Chem. C, 111, 16278-16283 (2007). https://doi.org/10.1021/jp075159d
- Shrivas, K., Agrawal, K., & Wu, H. F. Application of Platinum Nanoparticles as Affinity Probe and Matrix for Direct Analysis of Small Biomolecules and Microwave Digested Proteins using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry, Analyst, 136, 2852-2857 (2011). https://doi.org/10.1039/c1an15211d
- Sherrod, S. D., Diaz, A. J., Russell, W. K., Cremer, P. S., & Russell, D. H. Silver Nanoparticles as Selective Ionization Probes for Analysis of Olefins by Mass Spectrometry, Anal. Chem., 80, 6796-6799 (2008). https://doi.org/10.1021/ac800904g
- Chiu, T. C., Chang, L. C., Chiang, C. K., & Chang, H. T. Determining Estrogens Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Silver Nanoparticles as the Matrix, J. Am. Soc. Mass Spectrom., 19, 1343-1346 (2008). https://doi.org/10.1016/j.jasms.2008.06.006
- Hayasaka, T., Goto-Inoue, N., Zaima, N., Shrivas, K., Kashiwagi, Y., Yamamoto, M., Nakamoto, M., & Setou, M. Imaging Mass Spectrometry with Silver Nanoparticles Reveals the Distribution of Fatty Acids in Mouse Retinal Sections, J. Am. Soc. Mass Spectrom., 21, 1446-1454 (2010). https://doi.org/10.1016/j.jasms.2010.04.005
- Yalcin, T., & Li, L. Cobalt Coated Substrate for Matrix-Free Analysis of Small Molecules by Laser Desorption/Ionization Mass Spectrometry, Appl. Surf. Sci., 256, 1309-1312 (2009). https://doi.org/10.1016/j.apsusc.2009.10.030