본 논문에서는 이웃 탐색점에서의 평균 절대치 오차 (mean absoulte error, MAE) 및 탐색여역 줄임을 이용한 고속 블록 정합 알고리듬 제안하였다. 이 알고리듬은 두 단계로 구성되어있다. 첫 번째 단계에서는 탐색영역을 3$\times$3 크기의 영역으로 겹치지 않게 나눈 뒤, 각 영역의 중심 탐색점에 대하여 블록 정합을 행하여 MAE를 구하고, 이들 중 가장 작은 MAE를 기준 MAE로 정한다. 그리고, 두 번째 단계에서는 각 영역의 중심 탐색점에서의 MAE를 이용하여 각 3$\times$3 영역의 나머지 탐색점에서의 MAE의 최소 범위를 구한 뒤, 최소 범위가 기준 MAE로 결정된 탐색점 근처에 존재할 가능성이 매우 큼을 이용하여 기준 MAE로 결정된 탐색점을 중심으로 탐색영역의 크기를 줄인 뒤, 블록 정합이 필요한 탐색점에 대하여서만 블록 정합을 행함으로써 고속으로 움직임을 추정하였다. 모의 실험을 통하여 본 제안한 방법이 우수한 움직임 추정 성능을 유지하면서도 많은 계산량의 감소를 얻을 수 있음을 확인하였다.
본 논문에서는 전역 탐색 알고리듬 (full search algorithm; FSA)과 동일한 성능을 나타내면서도 고속으로 움직임을 추정할 수 있는 블록 움직임 추정을 위한 2단계 고속 전역 탐색 알고리듬을 제안하였다. 제안한 방법에서는 첫 번째 단계에서 9:1로 부표본화된 탐색점에 대하여 블록 정합을 행하여, 여기서 얻어지는 최소 평균 절대치 오차 (mean absolute error, MAE)를 기준 MAE로 설정한다. 두 번째 단계에서는 첫 번째 단계에서 블록 정합을 행하지 않은 탐색점에 대하여 각 탐색점에서 가질 수 있는 MAE의 최소 범위를 구한 뒤, 이 값이 기준 MAE보다 작은 탐색점에 대해여서만 블록 정합을 행하였다. 이때, MAE의 최소 범위는 첫 번째 단계에서 블록 정합을 통하여 얻은 MAE들과 현재 블록 내의 화소들의 이웃 화소간의 화소 값의 차를 이용하여 구하였다. 그러므로, 제안한 방법에서는 MAE의 최소 범위를 이용하여 블록 정합이 필요한 블록에 대하여서만 정합을 행함으로써 FAS와 동일한 움직임 추정 성능을 유지하면서도 움직임 벡터의 추정을 위한 계산량을 줄일 수 있었다.
대규모의 상품을 다루는 전자상거래 시스템에서 개인화된 추천은 필수적인 기능이 되고 있다. 대표적 추천 알고리즘인 협업필터링은 내용기반 추천에 비하여 뛰어난 추천성능을 제공해 주고 있으나, 희박성, 신규 아이템 문제(Cold-start), 확장성 등의 근본적인 한계를 갖고 있다. 본 연구에서는 추가적으로 협업필터링이 목표 대상자에 따라 비일관된 예측 능력의 차이를 보이는 추천 성능의 편차 문제를 제기하고자 한다. 추천성능의 편차는 기존의 Mean Absolute Error(MAE)에 의해서는 측정되기 어려우며 또한 정확도, 재현율 지표와도 독립적으로 평가되고 있다. 협업알고리즘의 정확한 성능평가를 위해서 본 연구에서는 MAE, MAE 편차, 정확도, 재현율을 포괄적으로 평가할 수 있는 확장 성능평가모델을 제안하고 이를 클러스터링 기반 협업필터링에 적용하여 성능을 비교 분석한다.
마이크로웨이브 추출방법과 환류 냉각 추출방법을 비교한 결과, 물과 에탄올의 혼합용매로 추출한 경우 마이크로웨이브 추출 방법에 의하여 추출시간을 단축시키면서 환류 냉각 추출 방법에서와 같은 수준의 가용성 고형분 및 총 폴리페놀 함량을 갖는 곰취 추출물을 얻을 수 있었다. 마이크로웨이브 추출시 최적 마이크로웨이브 에너지는 120∼150 W 였고 추출시간은 4∼8분이 적당하였다. 추출에 사용한 용매들 가운데 에탄올, 메탄올 보다 물 그리고 물과 에탄올 또는 메탄올 혼합용매를 사용한 추출물의 가용성 고형분, 총 폴리페놀 함량 및 항산화 효과가 높은 것으로 나타났다.
HRIV(Hybrid Rule-Interval Variation) method is presented to stabilize a class of nonlinear systems, where SMC(Sliding Mode Control) and ADC (ADaptive Control) schemes are incorporated to overcome the unstable characteristics of a conventional FLC(Fuzzy Logic Control). HRIV method consists of two modes: I-mode (Integral Sliding Mode PLC) and R-mode(RIV method). In I-mode, SMC is used to compensate for MAE(Minimum Approximation Error) caused by the heuristic characteristics of FLC. In R-mode, RIV method reduces interval lengths of rules as states converge to an equilibrium point, which makes the defined Lyapunov function candidate negative semi-definite without considering MAE, and the new uncertain parameters generated in R-mode are compensated by SMC. In RIV method, the overcontraction problem that the states are out of a rule-table can happen by the excessive reduction of rule intervals, which is solved with a dynamic modification of rule-intervals and a transition to I-mode. Especially, HRIV method has advantages to use the analytic upper bound of MAE and to reduce Its effect in the control input, compared with the previous researches. Finally, the proposed method is applied to stabilize a simple nonlinear system and a modified inverted pendulum system in simulation experiments.
마이크로웨이브 추출방법과 환류냉각 추출방법을 비교한 결과, 물과 메탄올 및 에탄올 혼합용매로 추출한 경우 마이크로웨이브 추출 방법에 의하여 추출시간을 단축시키면서 환류냉각 추출방법에서와 같은 수준의 추출율과 총 폴리페놀 함량을 갖는 섬쑥부쟁이 추출물을 얻을 수 있었다. 마이크로웨이브 추출시 최적 마이크로웨이브 에너지는 $120{\sim}150$ W였고 추출시간의 경우 $4{\sim}8$분이 적당하였다. 추출에 사용한 용매들 가운데 에탄올, 메탄올보다 물 그리고 물과 에탄올 또는 메탄올 혼합용매를 사용한 추출물의 추출율, 총 폴리페놀 함량 및 전자공여 효과가 높은 것으로 나타났다.
본 논문은 음향잡음감쇠기에서 CNN(: Convolutional Neural Network) 계층의 커널 사이즈가 성능에 미치는 영향을 위한 연구하였다 이 시스템은 기존의 적응필터를 이용하는 대신 신경망 적응예측필터를 이용한 심층학습 알고리즘으로 잡음감쇠 성능을 개선한다. 100-neuron, 16-filter CNN 필터와 오차 역전파(back propagation) 알고리즘을 이용하여 잡음이 포함된 단일입력 음성신호로부터 음성을 추정한다. 이는 음성신호가 갖는 유성음 구간에서의 준주기적 성질을 이용하는 것이다. 본 연구에서 커널 사이즈에 대한 잡음감쇠기의 성능을 검증하기 위하여 Tensorflow와 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 모의실험 결과, 커널 사이즈가 16 정도일 때 평균자승오차(MSE: Mean Square Error) 및 평균절대값오차(MAE: Mean Absolute Error) 값이 가장 작은 것으로 나타났으며 사이즈가 이보다 더 작거나 커지면 MSE 및 MAE 값이 증가하는 것을 볼 수 있다. 이는 음성신호의 경우 커널 사이즈가 16 정도일 때 특성을 가장 잘 포집할 수 있음을 알 수 있다.
본 연구는 복합부가여과에서 높은 원자번호 물질에서 발생된 특성방사선을 제거하기 위해 사용되는 알루미늄 여과판의 효율성을 분석하고자 양자검출효율, 화질평가를 실시하였다. 구리 0.1, 0.2, 0.3 mm 에 알루미늄 1mm 사용 전, 후를 평가하였다. IEC 규정에 의해 선질, 양자검출효율을 실험하고 화질평가는 PSNR, MAE, MSE, CNR, SNR 정성적 평가로는 국가암검진 흉부 평가표의 해상, 대조도 평가 7문항을 이용하였다. MTF 10, 50%에서 4.6, 2.54 cycle/mm 모두 동일했고 NPS, DQE, PSNR MAE, MSE, CNR, SNR, 정성적 평가는 모두 알루미늄 미사용 시 같거나 약간 우수했다. PSNR은 30 dB이상으로 모두 의미있는 수치였고 정성적 평가에서 T-test 검정은 p>0.05였다. 알루미늄 여과판은 광자검출효율과 화질 평가에서 사용 전, 후 큰 차이가 없으므로 특성 방사선 제거를 통한 피부선량 감소를 위해 사용됨이 효율적이라고 사료된다.
이차전지 시장의 확대에 따라 니켈 산화광을 로터리 킬른 및 전기로 공법을 이용하여 생산하는 공정이 전 세계적으로 확대되고 있는 상황이며 지속가능한 ESG 경영 확대에 따라 배출가스 내 질소산화물 등 대기오염물질 관리가 강화되고 있다. 건식니켈제련 공정의 주요 설비 중 하나인 로터리 킬른은 광석의 건조와 예비환원을 위한 설비이며 운전 중 질소산화물이 생성되므로 질소산화물 농도 예측 운전이 필요하다. 본 연구에서는 회귀 예측을 위한 LSTM 모델과 분류 예측을 위한 LightGBM 모델을 적용한 AutoML을 사용하여 모델을 최적화 하였다. LSTM을 적용 시 5분 후 예측 값은 상관계수 0.86, MAE 5.13ppm, 40분 후 예측 값은 상관계수 0.38, MAE 10.84ppm의 결과를 얻었다. 분류 예측을 위한 LightGBM 적용 결과 Test 정확도는 5분 후 0.75에서 40분 후 0.61로 상승하여 실제 조업에 활용할 수 있는 수준까지 상승되었고 AutoML을 통한 모델 최적화 결과 5분 후 예측 값의 정확도는 0.75에서 0.80까지, 40분 후의 예측 정확도는 0.61에서 0.70까지 향상되었다. 본 연구를 통해 로터리 킬른 질소산화물 예측 값을 실제 조업에 적용하여 대기오염물질 배출규제 준수 및 ESG 경영에 기여할 수 있다.
Selective catalytic reduction(SCR) is an exhaust gas reduction device to remove nitro oxides (NOx). SCR operation of ship can be controlled through valves for minimizing economic loss from SCR. Valve in SCR-high pressure (HP) system is directly connected to engine exhaust and operates in high temperature and high pressure. Long-term thermal deformation induced by engine heat weakens the sealing of the valve, which can lead to unexpected failures during ship sailing. In order to prevent the unexpected failures due to long-term valve thermal deformation, a failure prediction system using autoregressive integrated moving average (ARIMA) was proposed. Based on the heating experiment, virtual data mimicking temperature range around the SCR-HP valve were produced. By detecting abnormal temperature rise and fall based on the short-term ARIMA prediction, an algorithm determines whether present temperature data is required for failure prediction. The signal processed by the data collection algorithm was interpolated for the failure prediction. By comparing mean average error (MAE) and root mean square error (RMSE), ARIMA model and suitable prediction instant were determined.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.