DOI QR코드

DOI QR Code

A Analysis of Effectiveness of Aluminium Filter in the added Compound Filtration by Detective Quantum Efficiency and Image Quality Evaluation

복합부가여과에서 알루미늄 여과판 사용 시 양자검출효율과 화질평가를 통한 효율성 분석

  • 김상현 (서울대학교병원 영상의학과) ;
  • 김연민 (삼성서울병원 영상의학과) ;
  • 권경태 (동남보건대학교 방사선학과) ;
  • 마상철 (신한대학교 방사선학과) ;
  • 한동균 (을지대학교 방사선학과)
  • Received : 2015.05.06
  • Accepted : 2015.06.06
  • Published : 2015.10.28

Abstract

This study analysed the effectiveness of aluminium(Al) filter in the added compound filtration for the removal of characteristic radiation from high atomic number material by DQE and image evaluation. 1mm Al was applied to each 0.1, 0.2, 0.3 mm copper and befere and after use were evaluated. Beam quality and DQE were tested by IEC regulations and image quality was evaluated by PSNR, MAE, MSE, CNR, SNR and qualitative analysis was performed by 7 items for resolution and contrast from chest x-ray criteria of national cancer checkup. MTF 10 and 50% were the same by 4.6, 2.54 cycle/mm and NPS, DQE, PSNR MAE, MSE, CNR, SNR and qualitative analysis were all the same or slightly better when Al was not used. PSNR is over 30dB and all significant and at the qualitative analysis, the p-value of t-test was over 0.05. The DQE and image quality evaluation have little difference between before and after use of Al filter and it is effective to use the Al filter for the reduction of skin dose by removal of characteristic radiation.

본 연구는 복합부가여과에서 높은 원자번호 물질에서 발생된 특성방사선을 제거하기 위해 사용되는 알루미늄 여과판의 효율성을 분석하고자 양자검출효율, 화질평가를 실시하였다. 구리 0.1, 0.2, 0.3 mm 에 알루미늄 1mm 사용 전, 후를 평가하였다. IEC 규정에 의해 선질, 양자검출효율을 실험하고 화질평가는 PSNR, MAE, MSE, CNR, SNR 정성적 평가로는 국가암검진 흉부 평가표의 해상, 대조도 평가 7문항을 이용하였다. MTF 10, 50%에서 4.6, 2.54 cycle/mm 모두 동일했고 NPS, DQE, PSNR MAE, MSE, CNR, SNR, 정성적 평가는 모두 알루미늄 미사용 시 같거나 약간 우수했다. PSNR은 30 dB이상으로 모두 의미있는 수치였고 정성적 평가에서 T-test 검정은 p>0.05였다. 알루미늄 여과판은 광자검출효율과 화질 평가에서 사용 전, 후 큰 차이가 없으므로 특성 방사선 제거를 통한 피부선량 감소를 위해 사용됨이 효율적이라고 사료된다.

Keywords

References

  1. W. I. Cho, Y. K. Kim, and G. D. Lee, "Change of dose exposure and improvement of image quality by additional filtration in mammography", Journal of Radiation Protection, Vol.38, No.2, pp.78-90, 2013. https://doi.org/10.14407/jrp.2013.38.2.078
  2. G. S. Shin, J. H. Choi, Y. H. Kim, J. M. Kim, and C. G. Kim, "Patient dose in mammography", Journal of radiological science and technology, Vol.28, No.4, pp.293-299, 2005.
  3. S. J. Moon, Y. G. Kim, and S. G. Lee, "Reduction of patient dose exposure and improvement of image quality by use of additional filtration in digital radiology", Korean J Digit Imaging Med, pp.19-25, 2010.
  4. Richard R. Carlton, Arlene M, Adler Principles of Radiographic Imaging, 4th ed, pp.156-158, 2006.
  5. S. S. Park and G. J. Kim, Introduction to the physics of Diagnostic Radiology, Dae Hak Seo Lim, Seoul, pp.135-141, 1985.
  6. C. H. Lee and C. S. Lim, "A Study on Added Filters for Reduction of Radiation Exposure Dose in Skull A-P Projection", Journal of the Korea Academia-Industrial cooperation Society, Vol.12, No.7, pp.3117-3122, 2011. https://doi.org/10.5762/KAIS.2011.12.7.3117
  7. P. R. Granfors and R. Aufrichting, DQE(f) of an amorphous-silicon flat-panel x-ray detector: detector parameter influences and measurement methodology physics of medical imaging, SPIE, 3997, 2000.
  8. G. J. Lee, M. K. Kim, J. W. Lee, and H. C, Kim, "Research for the Environmental optimization of Dose and Image quality in Digital Radiography", Journal of the Institute of Electronics Engineers of Korea, Vol.50, No.2, 2013.
  9. Liu Bin, Wang Yuanyuan, and Wang Weiqi, "Spectrogram enhancement algorithm: a soft thresholding-based approach", Ultrasound in Medicine & Biology, Vol.25, No.5, pp.839-846, 1999. https://doi.org/10.1016/S0301-5629(99)00024-1
  10. H. S. Kim, J. H. Jeong, and J. W. Lee, "Research on Image Quality and Effective dose by Exposure Index Variation", Journal of the Korean Society of Radiology, Vol.7, No.1, pp.63-69, 2013. https://doi.org/10.7742/jksr.2013.7.1.063
  11. Okka W. Hamer, "Contrast-Detail Phantom Study for X-ray Spectrum Optimization Regarding Chest Radiography Using a Cesium Iodide-Amorphous Silicon Flat-Panel Detector", Invest Radiol, Vol.39, pp.610-618, 2004. https://doi.org/10.1097/01.rli.0000138091.96320.f8
  12. IEC 62220-1. Medical electrical equipment Characteristics of digital X-ray imaging devices Part 1: determination of the detective quantum efficiency, Geneva, 2003.
  13. IEC 61267. Medical diagnostic X-ray equipment Radiation conditions for use in the determination of characteristics, Geneva, 1994.
  14. H. Illers, E. Buhr, and C. Hoeschen, "Measurement of the detective quantum efficiency(DQE) of digital X-ray detectors according to the novel standard IEC 62220-1", Raiat. Prot. Dosimetry, Vol.114, pp.39-44, 2005. https://doi.org/10.1093/rpd/nch507
  15. E. Samei and M. J. Flynn, "An experimental comparison of detector performance for direct and indirect digital radiography systems", Med Phy, Vol.30, No.4, pp.608-622, 2003. https://doi.org/10.1118/1.1561285
  16. S. G. Shin, "Decreased of Patient Dose by Built-in Filter in Pelvis A-P Projection", Journal of Korea Contents Association, Vol.12, No.8, pp.233-239, 2012. https://doi.org/10.5392/JKCA.2012.12.08.233
  17. S. Yang, J. B. Han, N. G. Choi, and S. G. Lee, "The Review of Exposure Index in Digital Radiography and Image Quality", Jounrnal of Radiation Protection, Vol.38, No.1, pp.29-36, 2013. https://doi.org/10.14407/jrp.2013.38.1.029
  18. M. Uffmann and S. Cornelia, "Digital Radiography: Balance between image quality and required radiation dose", Eur. J. Radil, Vol.72, pp.202-208, 2009. https://doi.org/10.1016/j.ejrad.2009.05.060