• Title/Summary/Keyword: M-transform

Search Result 959, Processing Time 0.023 seconds

Arc Detection Performance and Processing Speed Improvement of Discrete Wavelet Transform Algorithm for Photovoltaic Series Arc Fault Detector (태양광 직렬 아크 검출기의 검출 성능 및 DWT 알고리즘 연산 속도 개선)

  • Cho, Chan-Gi;Ahn, Jae-Beom;Lee, Jin-Han;Lee, Ki-Duk;Lee, Jin;Ryoo, Hong-Jae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.32-37
    • /
    • 2021
  • This study proposes a DC series arc fault detector using a frequency analysis method called the discrete wavelet transform (DWT), in which the processing speed of the DWT algorithm is improved effectively. The processing time can be shortened because of the time characteristic of the DWT result. The performance of the developed DC series arc fault detector for a large photovoltaic system is verified with various DC series arc generation conditions. Successful DC series arc detection and improved calculation time were both demonstrated through the measured actual arc experimental result.

SEMI-ANALYTICAL SOLUTIONS TO HOLLING-TANNER MODEL USING BOTH DIFFERENTIAL TRANSFORM METHOD AND ADOMIAN DECOMPOSITION METHOD

  • A.A. ADENIJI;M.C. KEKANA;M.Y. SHATALOV
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.947-961
    • /
    • 2023
  • This paper summarizes some research findings that show how the differential transform method (DTM) is used to resolve the Holling-Tanner model. To confirm the application, effectiveness, and correctness of the approach, a comparison between the differential transform method (DTM) and the Adomian decomposition method (ADM) is carried out, and an accurate solution representation in truncated series is discovered. The approximate solution obtain using both techniques and comparison demonstrates same outcome which remains a preferred numerical method for resolving a system of nonlinear differential equations.

Analysis of the Ocean Acoustic Channel Using M-sequences in Ocean Acoustic Tomography (해양 음향 토모그래피에서 M-시퀀스를 이용한 해양 음향 채널 분석)

  • Seo, Seok;Lee, Chan-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.24-29
    • /
    • 2004
  • In ocean acoustic tomography (OAT), the pulse compression techniques using M-sequences are employed in the many studies for investigating the ocean structures. M-sequences can provide the good time and Doppler resolution in the process of demodulation using matched-filter. The signal-to-noise (SNR) performance at the output of receiver may be improved by manipulating received signal, i. e. coherently averaging. The processing time can be significantly reduced by using fast hadarmard transform (FHT) or fast Fourier transform (FFT). In this paper, we estimate the multipath arrival structures and delay times using the East Korean Sea experiment data and explore the compensation method for the detrimental effects on performance due to sampling rate error. We also analyze the characteristics of the ocean acoustic channels through scattering function, delay power profile, and time dispersions.

ON THE BEREZIN TRANSFORM ON $D^n$

  • Lee, Jae-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.311-324
    • /
    • 1997
  • We show that if $f \in L^{\infty}(D^n)$ satisfies Sf = rf for some r in the unit circle, where S is any convex combination of the iterations of Berezin operator, then f is n-harmonic. And we give some remarks and a conjecture on the space $M_2={f \in L^2(D^2, m \times m)\midBf = f$.

  • PDF

A fast M-band discrete wavelet transform algorithm using factorization of lossless matrix when the length of bases equals to 2M (기저의 길이 L=2M인 경우 무손실 행렬의 분해를 이용한 고속 M-대역 이산 웨이브렛 변환 알고리즘)

  • 권상근;이동식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2706-2713
    • /
    • 1997
  • The fast implementation algorithm of M-band discrete wavelet transform is propsed using the factorization of lossless matrix when the length of discrete orthogonal wavelet bases equals to 2M. In computational complexity when direct filtering method is employed, the number of multiplicationand addition is (2M$^{2}$) and (2M$^{2}$ -M), respectively. But by proposed algorithm, it can be reduced to (M$^{2}$+M) and (M$^{2}$+2M-1), respectively. and it is possible to reduce the compuatational complexity further when unitary matrix employed to design the discrete or thogonal wavelet basis has the fast algorithm.

  • PDF

CHARACTERIZING FUNCTIONS FIXED BY A WEIGHTED BEREZIN TRANSFORM IN THE BIDISC

  • Lee, Jaesung
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.437-444
    • /
    • 2019
  • For c > -1, let ${\nu}_c$ denote a weighted radial measure on ${\mathbb{C}}$ normalized so that ${\nu}_c(D)=1$. For $c_1,c_2>-1$ and $f{\in}L^1(D^2,\;{\nu}_{c_1}{\times}{\nu}_{c_2})$, we define the weighted Berezin transform $B_{c_1,c_2}f$ on $D^2$ by $$(B_{c_1,c_2})f(z,w)={\displaystyle{\smashmargin2{\int\nolimits_D}{\int\nolimits_D}}}f({\varphi}_z(x),\;{\varphi}_w(y))\;d{\nu}_{c_1}(x)d{\upsilon}_{c_2}(y)$$. This paper is about the space $M^p_{c_1,c_2}$ of function $f{\in}L^p(D^2,\;{\nu}_{c_1}{\times}{\nu}_{c_2})$ ) satisfying $B_{c_1,c_2}f=f$ for $1{\leq}p<{\infty}$. We find the identity operator on $M^p_{c_1,c_2}$ by using invariant Laplacians and we characterize some special type of functions in $M^p_{c_1,c_2}$.

2-D Large Inverse Transform (16×16, 32×32) for HEVC (High Efficiency Video Coding)

  • Park, Jong-Sik;Nam, Woo-Jin;Han, Seung-Mok;Lee, Seong-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.203-211
    • /
    • 2012
  • This paper proposes a $16{\times}16$ and $32{\times}32$ inverse transform architecture for HEVC (High Efficiency Video Coding). HEVC large transform of $16{\times}16$ and $32{\times}32$ suffers from huge computational complexity. To resolve this problem, we proposed a new large inverse transform architecture based on hardware reuse. The processing element is optimized by exploiting fully recursive and regular butterfly structure. To achieve low area, the processing element is implemented by shifters and adders without multiplier. Implementation of the proposed 2-D inverse transform architecture in 0.18 ${\mu}m$ technology shows about 300 MHz frequency and 287 Kgates area, which can process 4K ($3840{\times}2160$)@ 30 fps image.

A TYPE OF FRACTIONAL KINETIC EQUATIONS ASSOCIATED WITH THE (p, q)-EXTENDED 𝜏-HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Khan, Owais;Khan, Nabiullah;Choi, Junesang;Nisar, Kottakkaran Sooppy
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.381-392
    • /
    • 2021
  • During the last several decades, a great variety of fractional kinetic equations involving diverse special functions have been broadly and usefully employed in describing and solving several important problems of physics and astrophysics. In this paper, we aim to find solutions of a type of fractional kinetic equations associated with the (p, q)-extended 𝜏 -hypergeometric function and the (p, q)-extended 𝜏 -confluent hypergeometric function, by mainly using the Laplace transform. It is noted that the main employed techniques for this chosen type of fractional kinetic equations are Laplace transform, Sumudu transform, Laplace and Sumudu transforms, Laplace and Fourier transforms, P𝛘-transform, and an alternative method.

Implementation of a 3D Graphics Hardwired T&L Accelerator based on a SoC Platform for a Mobile System (SoC 플랫폼 기반 모바일용 3차원 그래픽 Hardwired T&L Accelerator 구현)

  • Lee, Kwang-Yeob;Koo, Yong-Seo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.9
    • /
    • pp.59-70
    • /
    • 2007
  • In this paper, we proposed an effective T&L(Transform & Lighting) Processor architecture for a real time 3D graphics acceleration SoC(System on a Chip) in a mobile system. We designed Floating point arithmetic IPs for a T&L processor. And we verified IPs using a SoC Platform. Designed T&L Processor consists of 24 bit floating point data format and 16 bit fixed point data format, and supports the pipeline keeping the balance between Transform process and Lighting process using a parallel computation of 3D graphics. The delay of pipeline processing only Transform operation is almost same as the delay processing both Transform operation and Lighting operation. Designed T&L Processor is implemented and verified using a SoC Platform. The T&L Processor operates at 80MHz frequency in Xilinx-Virtex4 FPGA. The processing speed is measured at the rate of 20M Vertexes/sec.