DOI QR코드

DOI QR Code

COMPLEX ANALYSIS AND THE FUNK TRANSFORM

  • Bailey, T.N. (Department of Mathematics University of Edinburgh James Clerk Maxwell Building The King′s Buildings Mayfield Road) ;
  • Eastwood, M.G. (Department of Pure Mathematics University of Adelaide) ;
  • Gover, A.R. (Department of Mathematics University of Auckland) ;
  • Mason, L.J. (Mathematical Institute)
  • Published : 2003.07.01

Abstract

The Funk transform is defined by integrating a function on the two-sphere over its great circles. We use complex analysis to invert this transform.

Keywords

References

  1. Ann. Scuola Norm. Sup.Pisa v.21 La convexite holomorphe dans l'espace analytique des cycles d'une variete algebrique A.Andreotti;F.Norguet
  2. Proc. Lond. Math. Soc. v.1 no.2 The solution of partial differential equations by means of definite integrals H.Bateman https://doi.org/10.1112/plms/s2-1.1.451
  3. Geom. Dedicata v.67 Zero-energy fields on real projective space T.N.Bailey;M.G.Eastwood https://doi.org/10.1023/A:1004939917121
  4. Radon Transforms and Tomography, Contemp. Math. v.278 Twistor results for integral transforms T.N.Bailey;M.G.Eastwood https://doi.org/10.1090/conm/278/04597
  5. Math. Proc. Cambridge Philos Soc. v.125 The Funk transform as a Penrose transform T.N.Bailey;M.G.Eastwood;A.R.Gover;L.J.Mason https://doi.org/10.1017/S0305004198002527
  6. Publ. Res. Inst. Math. Sci. v.36 Real forms of the Radon-Penrose transform A.D'Agnolo;C.Marastoni https://doi.org/10.2977/prims/1195142951
  7. J. Funct. Anal. v.139 Radon-Penrose transform for D-modules A.D'Agnolo;P.Schapira https://doi.org/10.1006/jfan.1996.0089
  8. The Penrose Transform and Analytic Cohomology in Representation Theory. Contemp. Math v.154 Introduction to Penrose transform M.G.Eastwood https://doi.org/10.1090/conm/154/01356
  9. The Sixteenth Winter School on Geometry and Physics, Srni, Suppl. Rendi. Circ. Mat. Palermo v.46 Complex methods in real integral geometry M.G.Eastwood
  10. Math. Ann. v.74 Uber Flachen mit lauter geschlossenen geodatischen Linien P.Funk https://doi.org/10.1007/BF01456044
  11. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat.;translated into English in J. Sov. Math. v.16;18 Integral geometry in affine and projective spaces I.M.Gelfand;S.G.Gindikin;M.I.Graev https://doi.org/10.1007/BF01098201
  12. Monatsh. Math. v.113 Some notes on the Radon transform and integral geometry S.G.Gindikin https://doi.org/10.1007/BF01299303
  13. Adv. Math. v.22 The Radon transform on Zoll surfaces V.Guillemin https://doi.org/10.1016/0001-8708(76)90139-0
  14. Lett. Math. Phys. v.12 An ultrahyperbolic analogue of the Robinson-Kerr theorem V.Guillemin;S.Sternberg https://doi.org/10.1007/BF00400297
  15. Amer. J. Math. v.91 The theory of hyperfunctions on totally real subsets of a complex manifold with applications to extension problems F.R.Harvey https://doi.org/10.2307/2373307
  16. Duke Math. J. v.4 The ultrahyperbolic differential equation with four independent variables F.John https://doi.org/10.1215/S0012-7094-38-00423-5
  17. J. Math. Phys. v.10 Solutions of the zero rest-mass equations R.Penrose https://doi.org/10.1063/1.1664756
  18. Spinors and Space-time v.1 R.Penrose;W.Rindler
  19. Sachs. Akad. Wiss. Leipzig, Math.- Nat. Kl. v.69 Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten J.Radon
  20. Ph.D. dissertation, University of California, Berkeley 1967, Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Math. Surveys and Monographs v.31 Homogeneous complex manifolds and representations of semisimple Lie groups W.Schmid
  21. Trans. Roy. Soc. Lond. v.A356 Inversion for the Radon line transform in higher dimensions G.A.J.Sparling
  22. Proc. Roy. Soc. Lond. v.A438 Contour integrals for the ultrahyperbolic wave equation N.M.J.Woodhouse
  23. N. M. J. Woodhouse, Contour integrals for the ultrahyperbolic wave equation, Proc. Roy. Soc. Lond. A438 (1992), 197–206.

Cited by

  1. Trkalian fields: ray transforms and mini-twistors vol.54, pp.10, 2013, https://doi.org/10.1063/1.4826106
  2. An inversion formula for the spherical transform in $$S^{2}$$ S 2 for a special family of circles of integration vol.6, pp.1, 2016, https://doi.org/10.1007/s13324-015-0105-5
  3. A generalization of the Funk–Radon transform vol.33, pp.3, 2017, https://doi.org/10.1088/1361-6420/33/3/035016
  4. The Penrose transform in split signature vol.30, pp.4, 2012, https://doi.org/10.1016/j.difgeo.2012.04.005
  5. Recovering functions defined on the unit sphere by integration on a special family of sub-spheres vol.7, pp.2, 2017, https://doi.org/10.1007/s13324-016-0135-7
  6. Fiber ball imaging vol.124, 2016, https://doi.org/10.1016/j.neuroimage.2015.09.049
  7. On minimal immersions in Finsler space vol.48, pp.4, 2015, https://doi.org/10.1007/s10455-015-9476-y
  8. Scattering amplitudes and BCFW recursion in twistor space vol.2010, pp.1, 2010, https://doi.org/10.1007/JHEP01(2010)064