• Title/Summary/Keyword: M-injective module

Search Result 49, Processing Time 0.019 seconds

w-INJECTIVE MODULES AND w-SEMI-HEREDITARY RINGS

  • Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.509-525
    • /
    • 2014
  • Let R be a commutative ring with identity. An R-module M is said to be w-projective if $Ext\frac{1}{R}$(M,N) is GV-torsion for any torsion-free w-module N. In this paper, we define a ring R to be w-semi-hereditary if every finite type ideal of R is w-projective. To characterize w-semi-hereditary rings, we introduce the concept of w-injective modules and study some basic properties of w-injective modules. Using these concepts, we show that R is w-semi-hereditary if and only if the total quotient ring T(R) of R is a von Neumann regular ring and $R_m$ is a valuation domain for any maximal w-ideal m of R. It is also shown that a connected ring R is w-semi-hereditary if and only if R is a Pr$\ddot{u}$fer v-multiplication domain.

Direct sum decompositions of indecomposable injective modules

  • Lee, Sang-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.33-43
    • /
    • 1998
  • Matlis posed the following question in 1958: if N is a direct summand of a direct sum M of indecomposable injectives, then is N itself a direct sum of indecomposable innjectives\ulcorner It will be proved that the Matlis problem has an affirmative answer when M is a multiplication module, and that a weaker condition then that of M being a multiplication module can be given to module M when M is a countable direct sum of indecomposable injectives.

  • PDF

INVERSE POLYNOMIAL MODULES INDUCED BY AN R-LINEAR MAP

  • Park, Sang-Won;Jeong, Jin-Sun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.693-699
    • /
    • 2010
  • In this paper we show that the flat property of a left R-module does not imply (carry over) to the corresponding inverse polynomial module. Then we define an induced inverse polynomial module as an R[x]-module, i.e., given an R-linear map f : M $\rightarrow$ N of left R-modules, we define $N+x^{-1}M[x^{-1}]$ as a left R[x]-module. Given an exact sequence of left R-modules $$0\;{\rightarrow}\;N\;{\rightarrow}\;E^0\;{\rightarrow}\;E^1\;{\rightarrow}\;0$$, where $E^0$, $E^1$ injective, we show $E^1\;+\;x^{-1}E^0[[x^{-1}]]$ is not an injective left R[x]-module, while $E^0[[x^{-1}]]$ is an injective left R[x]-module. Make a left R-module N as a left R[x]-module by xN = 0. We show inj $dim_R$ N = n implies inj $dim_{R[x]}$ N = n + 1 by using the induced inverse polynomial modules and their properties.

PRECOVERS AND PREENVELOPES BY MODULES OF FINITE FGT-INJECTIVE AND FGT-FLAT DIMENSIONS

  • Xiang, Yueming
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.497-510
    • /
    • 2010
  • Let R be a ring and n a fixed non-negative integer. $\cal{TI}_n$ (resp. $\cal{TF}_n$) denotes the class of all right R-modules of FGT-injective dimensions at most n (resp. all left R-modules of FGT-flat dimensions at most n). We prove that, if R is a right $\prod$-coherent ring, then every right R-module has a $\cal{TI}_n$-cover and every left R-module has a $\cal{TF}_n$-preenvelope. A right R-module M is called n-TI-injective in case $Ext^1$(N,M) = 0 for any $N\;{\in}\;\cal{TI}_n$. A left R-module F is said to be n-TI-flat if $Tor_1$(N, F) = 0 for any $N\;{\in}\;\cal{TI}_n$. Some properties of n-TI-injective and n-TI-flat modules and their relations with $\cal{TI}_n$-(pre)covers and $\cal{TF}_n$-preenvelopes are also studied.

Principally Small Injective Rings

  • Xiang, Yueming
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.2
    • /
    • pp.177-185
    • /
    • 2011
  • A right ideal I of a ring R is small in case for every proper right ideal K of R, K + I ${\neq}$ = R. A right R-module M is called PS-injective if every R-homomorphism f : aR ${\rightarrow}$ M for every principally small right ideal aR can be extended to R ${\rightarrow}$ M. A ring R is called right PS-injective if R is PS-injective as a right R-module. We develop, in this article, PS-injectivity as a generalization of P-injectivity and small injectivity. Many characterizations of right PS-injective rings are studied. In light of these facts, we get several new properties of a right GPF ring and a semiprimitive ring in terms of right PS-injectivity. Related examples are given as well.

CONEAT SUBMODULES AND CONEAT-FLAT MODULES

  • Buyukasik, Engin;Durgun, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1305-1319
    • /
    • 2014
  • A submodule N of a right R-module M is called coneat if for every simple right R-module S, any homomorphism $N{\rightarrow}S$ can be extended to a homomorphism $M{\rightarrow}S$. M is called coneat-flat if the kernel of any epimorphism $Y{\rightarrow}M{\rightarrow}0$ is coneat in Y. It is proven that (1) coneat submodules of any right R-module are coclosed if and only if R is right K-ring; (2) every right R-module is coneat-flat if and only if R is right V -ring; (3) coneat submodules of right injective modules are exactly the modules which have no maximal submodules if and only if R is right small ring. If R is commutative, then a module M is coneat-flat if and only if $M^+$ is m-injective. Every maximal left ideal of R is finitely generated if and only if every absolutely pure left R-module is m-injective. A commutative ring R is perfect if and only if every coneat-flat module is projective. We also study the rings over which coneat-flat and flat modules coincide.

On Injectivity of Modules via Semisimplicity

  • Nguyen, Thi Thu Ha
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.641-655
    • /
    • 2022
  • A right R-module N is called pseudo semisimple-M-injective if for any monomorphism from every semisimple submodule of M to N, can be extended to a homomorphism from M to N. In this paper, we study some properties of pseudo semisimple-injective modules. Moreover, some results of pseudo semisimple-injective modules over formal triangular matrix rings are obtained.

A NOTE ON MONOFORM MODULES

  • Hajikarimi, Alireza;Naghipour, Ali Reza
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.505-514
    • /
    • 2019
  • Let R be a commutative ring with identity and M be a unitary R-module. A submodule N of M is called a dense submodule if $Hom_R(M/N,\;E_R(M))=0$, where $E_R(M)$ is the injective hull of M. The R-module M is said to be monoform if any nonzero submodule of M is a dense submodule. In this paper, among the other results, it is shown that any kind of the following module is monoform. (1) The prime R-module M such that for any nonzero submodule N of M, $Ann_R(M/N){\neq}Ann_R(M)$. (2) Strongly prime R-module. (3) Faithful multiplication module over an integral domain.

RINGS AND MODULES CHARACTERIZED BY OPPOSITES OF FP-INJECTIVITY

  • Buyukasik, EngIn;Kafkas-DemIrcI, GIzem
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.439-450
    • /
    • 2019
  • Let R be a ring with unity. Given modules $M_R$ and $_RN$, $M_R$ is said to be absolutely $_RN$-pure if $M{\otimes}N{\rightarrow}L{\otimes}N$ is a monomorphism for every extension $L_R$ of $M_R$. For a module $M_R$, the subpurity domain of $M_R$ is defined to be the collection of all modules $_RN$ such that $M_R$ is absolutely $_RN$-pure. Clearly $M_R$ is absolutely $_RF$-pure for every flat module $_RF$, and that $M_R$ is FP-injective if the subpurity domain of M is the entire class of left modules. As an opposite of FP-injective modules, $M_R$ is said to be a test for flatness by subpurity (or t.f.b.s. for short) if its subpurity domain is as small as possible, namely, consisting of exactly the flat left modules. Every ring has a right t.f.b.s. module. $R_R$ is t.f.b.s. and every finitely generated right ideal is finitely presented if and only if R is right semihereditary. A domain R is $Pr{\ddot{u}}fer$ if and only if R is t.f.b.s. The rings whose simple right modules are t.f.b.s. or injective are completely characterized. Some necessary conditions for the rings whose right modules are t.f.b.s. or injective are obtained.