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Abstract. A right R-module N is called pseudo semisimple-M -injective if for any

monomorphism from every semisimple submodule of M to N , can be extended to a homo-

morphism from M to N . In this paper, we study some properties of pseudo semisimple-

injective modules. Moreover, some results of pseudo semisimple-injective modules over

formal triangular matrix rings are obtained.

1. Introduction

Throughout the paper, R represents an associative ring with identity 1 6= 0 and

all modules are unitary R-modules. We write MR (resp., RM) to indicate that M

is a right (resp., left) R-module. We also write J (resp., Zr, Sr) for the Jacobson

radical (resp., the right singular ideal, the right socle) of R and E(MR) for the

injective hull of MR. If X is a subset of R, the right (resp., left) annihilator of X in

R is denoted by rR(X) (resp., lR(X)) or simply r(X) (resp., l(X)) if no confusion

appears. If N is a submodule ofM (resp., proper submodule) we denote by N ≤M

(resp., N < M). Moreover, we write N ≤e M, N ≪M , N ≤⊕ M and N ≤max M

to indicate that N is an essential submodule, a small submodule, a direct summand

and a maximal submodule of M , respectively. A module M is called uniform if

M 6= 0 and every non-zero submodule of M is essential in M .

Recently, some authors considered some generalizations of quasi-injective mod-

ules and automorphism-invariant modules (pseudo-injective modules)(see [1, 6, 9,
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10, 12, 14, 15, 16, 17]). Some properties of automorphism-invariant modules and

the structure of rings via the class of automorphism-invariant modules are stud-

ied (see [3, 8, 11, 18, 19]). In 2005, Hai Quang Dinh studied a generalization of

the M -injective module that is pseudo M -injective. A module N is called pseudo

M -injective if for any submodule A of M and every monomorphism from A to

N , can be extended to a homomorphism from M to N . A module M is called

pseudo-injective if M is pseudo M -injective.

A generalization of M -injective modules, Amin-Yousif-Zeyada ([4]) introduced

the soc M -injective. A right R-module N is called soc-M -injective if for any homo-

morphism Soc(M) → N , can be extended to a homomorphism from M to N . A

module M is called soc-quasi-injective if M is soc-M -injective.

The purpose of this paper, we consider a generalization of soc-M -injective and

pseudo M -injective modules, that is pseudo semisimple-M -injective. We call that

a module N is pseudo semisimple-M -injective if for any monomorphism from every

semisimple submodule ofM to N , can be extended to a homomorphism fromM to

N . A moduleM is called pseudo semisimple-injective ifM is pseudo semisimple-M -

injective. In this paper, we will give some properties of pseudo semisimple-injective

modules and structure of rings via these modules.

In Section 2, we give some basic properties of pseudo semisimple-injective mod-

ules and relatively pseudo semisimple-injective modules. It is well known that a

module pseudo-injective is direct-injective (C2-module) (see [6, Theorem 2.6]). We

study this result for pseudo semisimple-injective modules. We prove in Proposition

2.4 that pseudo semisimple-injective modules are semisimple-direct-injective. On

the other hand, we show that if M = ⊕i∈IMi is a direct sum of uniform submod-

ulesMi, thenM is soc-quasi-injective if and only ifM is pseudo semisimple-injective

(see Theorem 2.12). Next, we consider the projectivity of socles of modules via the

pseudo semisimple-injectivity and we obtain in Theorem 2.13 that; if M is a pro-

jective module, then Soc(M) is projective iff every quotient module of a pseudo

semisimple-M -injective module is pseudo semisimple-M -injective, iff every quotient

module of a semisimple-M -injective module is pseudo semisimple-M -injective, iff ev-

ery quotient module of an injective module is pseudo semisimple-M -injective. From

the definition of pseudo semisimple-injective module, we study structure of rings in

which every semisimple right module is pseudo semisimple-M -injective for every

cyclic rightmodule M . We show that a ring R is a right Noetherian right V-ring iff

every semisimple right R-module is pseudo semisimple-M-injective for every cyclic

right R-module M , iff every right R-module is pseudo semisimple-M -injective for

every cyclic right R-moduleM (see Theorem 2.23). Some other properties are stud-

ied and extended. Finally, we study the pseudo semisimple-injectivity of modules

over formal triangular matrix rings.
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2. On pseudo semisimple-injective modules

Definition 2.1. A right R-module N is called pseudo semisimple-M -injective if for

any semisimple submodule A of M , any monomorphism f : A → N extends to a

homomorphism from M to N . A module M is called pseudo semisimple-injective

if M is pseudo semisimple-M -injective.

A right R-module N is called soc-M -injective if for any homomorphism from

Soc(M) to N , can be extended to a homomorphism from M to N . A module M is

called soc-quasi-injective if M is soc-M -injective (see [4]).

All soc-M -injective modules are pseudo semisimple-M -injective. But the con-

verse is not true in general.

Example 2.2. Assume that a right R-module M has only five submodules

0,M1,M2, M1 ⊕M2,M , which M1 6≃ M2 and End(Mi) ≃ Z2 (see Hallett’s ex-

ample and Teply’s example). Then M is pseudo semisimple-M -injective. Note that

Soc(M) =M1 ⊕M2 and the projection of Soc(M) to M1 cannot be extended to a

homomorphism from M to M . It follows that M is not soc-M -injective.

Lemma 2.3. Let M and N be two modules.

(1) If N is pseudo semisimple-M -injective and A is a direct summand of N , then

A is pseudo semisimple-M -injective.

(2) If N is pseudo semisimple-M -injective and B is a closed submodule of M ,

then N is pseudo semisimple-B-injective.

(3) If M is pseudo semisimple-injective, then A is pseudo semisimple-injective

for all fully invariant closed submodule A of M .

Proof. It is obvious.

A module M is called semisimple-direct-injective if for any semisimple submod-

ules A,B of M with A ∼= B and B a direct summand of M , A is a summand of M

(see [2]).

Proposition 2.4. Every pseudo semisimple-injective module is semisimple-direct-

injective.

Proof. Assume that M is a pseudo semisimple-injective module. Let B be a direct

summand ofM and A be a semisimple submodule ofM with A ≃ B. We show that

B is a direct summand of M . Let f : A→ B be an isomorphism. We have that B

is a direct summand of M and obtain that B is pseudo semisimple-M -injective by

Lemma 2.3. There exists a homomorphism α :M → B that is an extension of f .
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A
ι

//

f

��

M

α

~~

B

That is αι = f with the inclusion map ι : A → M . We deduce that ι splits and so

A is a direct summand of M .

Corollary 2.5. Let M be a pseudo semisimple-injective module. If M = A1 ⊕A2

where A1 is semisimple and f : A1 → A2 is a homomorphism, then Im(f) is a

direct summand of A2.

Theorem 2.6. Let R and S be Morita-equivalent rings with the category equivalence

F : Mod−R → Mod− S. Let M , N and K be right R-modules and f : H → L be

a homomorphism of right R-modules. Then:

(1) KR is semisimple if and only if F(K)S is semisimple.

(2) f is a monomorphism if and only if F(f) is a monomorphism.

(3) MR is pseudo semisimple-N -injective if and only if F(M)S is pseudo

semisimple-F(N)S -injective.

Proof. (1) and (2) by [5, Proposition 21.4, 21.8].

(3) is followed from (1) and (2).

A ring R is called right pseudo semisimple-injective if RR is pseudo semisimple-

injective.

Corollary 2.7. Right pseudo semisimple-injectivity is a Morita invariant property

of rings.

Proposition 2.8. Let M and N be modules and X = M ⊕ N. The following

conditions are equivalent:

(1) N is soc-M -injective.

(2) For each semisimple submodule K of X, where K∩N = 0, there exists C ≤ X

such that K ≤ C and N ⊕ C = X.
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Proof. (1) ⇒ (2). Let K be a semisimple submodule of X , with K ∩ N = 0,

πM : M ⊕ N → M and πN : M ⊕ N → N the canonical projections. We can

check that N ⊕K = N ⊕ πM (K) and πM (K) is a semisimple submodule of M . Let

ϕ : πM (K) → πN (K) be a homomorphism defined as follows: for k = m + n ∈ K

(with m ∈M,n ∈ N), ϕ(m) = n. It is easy to see that ϕ is a monomorphism. Since

N is pseudo semisimple-M -injective, there is a homomorphism ϕ̄ : M → N , which

extends ϕ. Let C = {m− ϕ̄(m)| m ∈M} be a submodule of X . Then X = N ⊕C

and K is contained in C.

(2) ⇒ (1). Let A be a semisimple submodule of M and ϕ : A → N be a

homomorphism. Put K = {a− ϕ(a)| a ∈ A} be a submodule of X . It follows that

K ≤ A ⊕ ϕ(A). Then πM (K) = A, N ⊕ K = N ⊕ πM (K) = N ⊕ A and K is

a semisimple submodule of X . By assumption, there exists a submodule C of X

containing K with N ⊕ C = X . Let π : N ⊕ C → N be the natural projection.

Then the restriction π|M extends ϕ, proving (1).

Similarly, we have a result for pseudo semisimple-M -injective modules.

Proposition 2.9. Let M and N be modules and X = M ⊕ N. The following

conditions are equivalent:

(1) N is pseudo semisimple-M -injective.

(2) For each semisimple submodule K of X, where K ∩M = K ∩N = 0, there

exists C ≤ X such that K ≤ C and N ⊕ C = X.

Theorem 2.10. If M ⊕ N is a pseudo semisimple-injective module, then N is

soc-M -injective.

Proof. Assume that M ⊕ N is pseudo semisimple-injective, and f : Soc(M) → N

is a homomorphism. Define g : Soc(M) → M ⊕ N by g(m) = (m, f(m)) (for all

m ∈ Soc(M)). Clearly, g is a monomorphism. By Lemma 2.3, M ⊕ N is pseudo

semisimple-M -injective, whence g extends to a homomorphism g∗ : M → M ⊕N .

Let π : M ⊕ N → N be the natural projection. Then πg∗ is a homomorphism

extending f. Consequently, N is soc-M -injective.

Corollary 2.11. For any integer n ≥ 2, Mn is pseudo semisimple-injective if and

only if M is soc-quasi-injective.

Theorem 2.12. Let M = ⊕i∈IMi be a direct sum of uniform submodules Mi.

Then M is soc-quasi-injective if and only if M is pseudo semisimple-injective.

Proof. (⇒) is obvious.

(⇐) First let M be a uniform pseudo semisimple-injective module. Let f :

Soc(M) → M be a homomorphism. If Kerf = 0, then f can be extended to an
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endomorphism ofM . Otherwise,Kerf 6= 0. Let g = ι−f , where ι : Soc(M) →M is

the inclusion homomorphism. Since Kerf 6= 0 and M is uniform, Kerg = 0. Then,

by the pseudo semisimple-injectivity, g can be extended to some h ∈ End(M). Now

1M − h ∈ End(M) is an extension of f . Thus M is soc-quasi-injective.

Now let M be a pseudo semisimple-injective module and M = ⊕i∈IMi. For

all j ∈ I, we have ⊕i∈I\{j}Mi is pseudo semisimple-Mj-injective by Theorem

2.10. Since direct summands of pseudo semisimple-injective are obviously pseudo

semisimple-injective and by the remark above, each Mj is soc-quasi-injective.

Therefore, M is soc-quasi-injective

Theorem 2.13. The following conditions are equivalent for a projective module

M :

(1) Soc(M) is projective.

(2) Every quotient module of a pseudo semisimple-M -injective module is pseudo

semisimple-M -injective.

(3) Every quotient module of a soc-M -injective module is pseudo semisimple-M -

injective.

(4) Every quotient module of an injective module is pseudo semisimple-M -

injective.

Proof. (1) ⇒ (2). Assume that ER is pseudo semisimple-M -injective and π : E −→

B is an epimorphism. Let f : S −→ B be a monomorphism with S a semismple

submodule of M .
0

0 S M

E B 0

?
-

p

p

p

p

p

p

p

p	

h

?
f

-ι

-π -

where ι is the inclusion.

By (1), Soc(M) is projective, and so S is projective. Therefore, there exists an

R-homomorphism h : S −→ E such that πh = f . Since f is monomorphism, h is

too. Now since E is pseudo semisimple-M -injective, there is an R-homomorphism

h′ : M −→ E such that h′ι = h. Let h′′ = πh′ : M −→ B, then h′′ι = f . This

means B is pseudo semisimple-M -injective.

(2) ⇒ (3) ⇒ (4) is obvious.



Pseudo Semisimple-injective 647

(4) ⇒ (1). We consider the epimorphism h : A −→ B and an R-homomorphism

α : Soc(M) −→ B.

Since B = h(A)
ψ
∼= A/Kerh

ι1
→֒ E(A)/Kerh, where ι1 is the inclusion and

ψ(h(a)) = a + Kerh, for all a ∈ A. Then let j = ι1ψ. We consider the following

diagram:

Soc(M)
ι
→֒ M

ϕ

ւ
α
→↓

A
h

−→ B −→ 0
j
→↓

E(A)
p

−→ E(A)/Kerh −→ 0

where ι is the inclusion and p is the natural epimorphism.

By (4), E(A)/Kerh is pseudo semisimple-M -injective and then there exists

an R-homomorphism α′ : M −→ E(A)/Kerh such that α′ι = jα. Since M is

projective, there is an R-homomorphism α′′ :M −→ E(A) such that pα′′ = α′. Let

h′ = α′′ι : Soc(M) −→ E(A). It is easy to see that h′(Soc(M)) ≤ A, so there exists

an R-homomorphism ϕ : Soc(M) −→ A such that ϕ(x) = h′(x), for all x ∈ Soc(M).

Now we claim that hϕ = α. In fact, for each x ∈ Soc(M) we have

j(α(x)) = α′(ι(x)) = α′(x) = p(α′′(x)) = p(h′(x)) = p(ϕ(x)).

Since α is an epimorphism, α(x) = h(a) for some a ∈ A. Therefore j(α(x)) =

j(h(a)) = a + Kerh, and so a + Kerh = ϕ(x) + Kerh, h(a − ϕ(x)) = 0. Hence

hϕ(x) = h(a) = α(x). Thus Soc(M) is projective.

Corollary 2.14. The following conditions are equivalent:

(1) Soc(RR) is projective.

(2) Every quotient module of a pseudo semisimple-RR-injective module is pseudo

semisimple-RR-injective.

(3) Every quotient module of a soc-RR-injective module is pseudo semisimple-

RR-injective.

(4) Every quotient module of an injective module is pseudo semisimple-RR-

injective.

Proposition 2.15. Let M be a finitely generated module. If every direct sum

of pseudo semisimple-M -injective modules is pseudo semisimple-M -injective, then

Soc(M) is finitely generated.
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Proof. Assume that Soc(M) = ⊕ISi with Si simple. Let i : Soc(M) → ⊕IE(Si)

be the inclusion monomorphism. Since ⊕IE(Si) is pseudo semisimple-M -injective,

there exists a homomorphism g : M → ⊕IE(Si) such that g is an extension of i.

Since M is finitely generated, i(Soc(M)) = g(Soc(M)) ≤ ⊕KE(Si) for some finite

subset K of I. Moreover, Soc(⊕KE(Si)) is finitely generated and so Soc(M) is

finitely generated.

Proposition 2.16. For a right R-module M, the following conditions are equivalent:

(1) M is soc-E(M)-injective.

(2) M is pseudo semisimple-N -injective for all right R-modules N .

Proof. (1) ⇒ (2) by [4, Theorem 3.1].

(2) ⇒ (1). By [4, Theorem 3.1], we only proveM = E⊕T with E injective and

Soc(T ) = 0. If Soc(M) = 0, we are done. Otherwise, we have that M is pseudo

semisimple-E(Soc(M))-injective and obtain that there exists a homomorphism f :

E(Soc(M)) → M such that f(x) = x for all x ∈ Soc(M). Since Soc(M) ≤e

E(Soc(M)), f is a monomorphism. That means f is a splitting monomorphism.

Thus, M = E ⊕ T with E injective and Soc(T ) = 0.

Corollary 2.17. The following conditions on a ring R are equivalent:

(1) R is right Noetherian.

(2) If S1, S2, . . . , Sn . . . are simple right R-modules, ⊕∞
i=1

E(Si) is pseudo semisimple-

N -injective for all right R-modules N .

Lemma 2.18. The following conditions are equivalent for a right R-module M :

(1) Every right R-module is pseudo semisimple-M -injective.

(2) Every semisimple right R-module is pseudo semisimple-M -injective.

(3) Soc(M) is a direct summand of M .

Proof. (1) ⇒ (2) and (3) ⇒ (1) are obvious.

(2) ⇒ (3). Assume that every semisimple right R-module is pseudo semisimple-

M -injective. Then, Soc(M) is pseudo semisimple-M -injective. It follows that

Soc(M) is a direct summand of M .

A ring R is called a right V-ring if every simple right R-module is injective.

Proposition 2.19. The following conditions are equivalent for a ring R:

(1) R is a right V-ring.
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(2) Every finitely cogenerated right R-module is a pseudo semisimple-injective

right R-module.

Proof. (1) ⇒ (2) is obvious.

(2) ⇒ (1). Let S be a simple right R-module. Then, S ⊕ E(S) is a finitely

cogenerated R-module. Take ι : S → E(S) the inclusion map. It follows that

S = ι(S) is a direct summand of E(S) by Corollary 2.5. We deduce that E = E(S)

is injective.

Corollary 2.20. The following conditions are equivalent for a ring R:

(1) R is a right Noetherian right V-ring.

(2) S⊕E(S) is a pseudo semisimple-injective right R-module for all simple right

R-module S.

Similarly, we also have the following result for Noetherian V-rings.

Proposition 2.21. The following conditions are equivalent for a ring R:

(1) R is a right Noetherian right V-ring.

(2) Every right R-module with essential socle is a pseudo semisimple-injective

right R-module.

Proof. (1) ⇒ (2) is obvious.

(2) ⇒ (1). Let {Si}i∈I be a family of simple modules. Then, (⊕i∈ISi) ⊕

E(⊕i∈ISi) is a rightR-module with essential socle, and so it is a semisimple-injective

right R-module. It follows that ⊕i∈ISi is injective.

Corollary 2.22. The following conditions are equivalent for a ring R:

(1) R is a right Noetherian right V-ring.

(2) S ⊕E(S) is a pseudo semisimple-injective right R-module for all semisimple

right R-module S.

Theorem 2.23. The following conditions are equivalent for a ring R:

(1) R is a right Noetherian right V-ring.

(2) Every semisimple right R-module is pseudo semisimple-M-injective for every

cyclic right R-module M .

(3) Every right R-module is pseudo semisimple-M -injective for every cyclic right

R-module M .



650 Nguyen Thi Thu Ha

Proof. (1) ⇒ (2). Since R is a right Noetherian right V-ring, every semisimple

right R-module is injective, and hence every semisimple right R-module is pseudo

semisimple-M -injective for every cyclic right R-module M .

(2) ⇒ (3). Assume that every semisimple right R-module is pseudo semisimple-

C-injective for every cyclic right R-module C. Let M be a cyclic right R-module.

Then, Soc(M) is a direct summand of M . We deduce that every right R-module is

pseudo semisimple-M -injective by Lemma 2.18.

(3) ⇒ (1) We show that every semisimple right R-module is injective. Let S be

a semisimple right R-module and N be a cyclic right R-module. Then, every right

R-module is pseudo semisimple-N -injective by (3). It follows that Soc(N) is a direct

summand of N by Lemma 2.18. This implies that S is semisimple-N -injective. We

deduce that S is injective by [4, Lemma 3.11].

Enochs [7] introduced the injective cover notion which is the dual to the injective

envelope, and showed that a ring R is a right Noetherian ring if and only if every

right R-module has an injective cover. Now, we introduce the pseudo semisimple-

injective cover notion.

Definition 2.24. An R-homomorphism g : E → M is called a psi-cover of a right

R-module M if E is a pseudo semisimple-injective module such that any diagram

E
g

// M

E′

>>
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

OO

with E′ a pseudo semisimple-injective module can be completed; and the dia-

gram

E
g

// M

E

g

>>
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

α

OO

can be completed only by an automorphism α.

Now, we prove in Theorem 2.25 that a ring R is a right Noetherian right V-ring

if and only if every right R-modules with essential socle has a psi-cover.
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Theorem 2.25. The following are equivalent for a ring R:

(1) R is a right Noetherian right V-ring.

(2) Every right R-modules with essential socle has a psi-cover.

Proof. (1) ⇒ (2). It is obvious.

(2) ⇒ (1) Let S be a semisimple right R-module and let M = S ⊕ E(S). We show

that M is pseudo semisimple-injective. Call g : E →M a psi-cover of M . Consider

the following diagrams:

E M

S

-g

�
�
���ι1

p

p

p

p

p

p

p

p

6
,

E M

E(S)

-g

�
�
��ι2

p

p

p

p

p

p

p6
.

where ι1 : M → S and ι2 : M → E(S) are the canonical injections. Note that

all modules S and E(S) are pseudo semisimple-injective modules. By the definition

of psi-cover, there exist homomorphisms α1 : S → E and α2 : E(S) → E such that

gαi = ιi for i = 1, 2. Define α : M → E by α(x1 + x2) = α1(x1) + α2(x2) for all

x1 ∈ S and x2 ∈ E(S). It can easily be checked that α is well-defined and we have

gα(x1 + x2) = gα1(x1) + gα2(x2) = ι1(x1) + ι2(x2) = x1 + x2.

Thus, gα = 1M , and α : M → E is a split monomorphism. Then M is isomorphic

to a direct summand of E. Since a direct summand of a pseudo semisimple-injective

module is again a pseudo semisimple-injective module, M is a pseudo semisimple-

injective module. By Corollary 2.22, R is a right Noetherian V-ring.

Let R and S be two rings and M be an R − S-bimodule (left R-module and

right S-module). Take

K =

(

R M

0 S

)

=

{(

r m

0 s

)

| r ∈ R, s ∈ S,m ∈M

}

a ring with the addition and multiplication as follows:

(

r m

0 s

)

+

(

r′ m′

0 s′

)

=

(

r + r′ m+m′

0 s+ s′

)

(

r m

0 s

)(

r′ m′

0 s′

)

=

(

rr′ rm′ +ms

0 ss′

)
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The ring K is also called a formal triangular matrix ring (see [13]). It is well-

known that the category of right K-module Mod-K is equivalent to the category

T of triples (X,Y, f), where X is a right R-module, Y is a right S-module and

f : X ⊗R M → Y is a homomorphism of right S-modules. The right K-module

(X,Y, f) is the additive group X ⊕ Y with right K-action given by

(x y)

(

r m

0 s

)

= (xr, f(x⊗m) + ys)

Next, we consider homomorphisms of K-modules. Let (X1, Y1, f1) and

(X2, Y2, f2) be right K-modules. A right K-homomorphism ϕ : (X1, Y1, f1) →

(X2, Y2, f2) is a pair (ϕ1, ϕ2) where ϕ1 : X1 → X2 is a homomorphism of right

R-modules and ϕ2 : Y1 → Y2 is a homomorphism of right S-modules such that the

following diagram is commutative

X1 ⊗RM
f1

//

ϕ1⊗1M

��

Y1

ϕ2

��

X2 ⊗RM
f2

// Y2

Note that a K-homomorphism ϕ = (ϕ1, ϕ2) : (X1, Y1, f1) → (X2, Y2, f2) is a

monomorphism (epimorphism) if and only if ϕ1 and ϕ2 are monomorphisms (epi-

morphisms).

A submodule of a right K-module (X,Y, f) is a triple (X0, Y0, f0), where X0 ≤

XR, Y0 ≤ YS such that the following diagram is commutative.

X0 ⊗RM
f0

//

ι1⊗1M

��

Y0

ι2

��

X ⊗RM
f

// Y

with ι1 : X0 → X , ι2 : Y0 → Y the inclusion maps.

Proposition 2.26. Let K =

(

R M

0 S

)

and (X,Y, f) be a right K-module. If

(X,Y, f) is a pseudo semisimple-injective right K-module then

(1) Y is a pseudo semisimple-injective right S-module.
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(2) H = {x ∈ X | f(x⊗m) = 0 for all m ∈M} is a pseudo semisimple-injective

right R-module.

Proof. (1) Let Y0 be a semisimple submodule of Y and ϕ : Y0 → Y is an S-

monomorphism. Then, (0, Y0, 0) is a semisimple submodule of K-module (X,Y, f)

and γ = (0, ϕ) : (0, Y0, 0) → (X,Y, f) is a K-homomorphism. By our assumption,

(0, ϕ) is a K-monomorphism, and so there exists an endomorphism θ = (θ1, θ2) of

(X,Y, f) such that θ is an extension of γ. It follows that θ2 : Y → Y is an extension

of ϕ. Hence Y is a pseudo semisimple-injective module.

(2) Let X0 be a semisimple submodule of H and β : X0 → H is an R-

monomorphism. Then, (X0, 0, 0) is a semisimple submodule of K-module (X,Y, f)

and δ = (β, 0) : (X0, 0, 0) → (X,Y, f) is a K-monomorphism, and so there exists an

endomorphism ω = (ω1, ω2) of (X,Y, f) such that ω is an extension of δ. It means

that the following is commutative

X ⊗RM
f

//

ω1⊗1M

��

Y

ω2

��

X ⊗RM
f

// Y

and so, ω2 ◦ f = f ◦ (ω1 ⊗ 1M ). We deduce that ω1(H) ≤ H . Then, ω1|H : H → H

is an extension of β. It shows that H is a pseudo semisimple-injective module.

Proposition 2.27. Let K =

(

R M

0 S

)

and (X,Y, f) be a right K-module. If

(1) Y is a pseudo semisimple-injective right S-module and

(2) H = {x ∈ X | f(x⊗m) = 0 for all m ∈M} is a pseudo semisimple-injective

right R-module.

then (H,Y, 0) is a pseudo semisimple-injective right K-module.

Proof. Let (X0, Y0, f0) be a semisimple submodule of (H,Y, 0) and α = (α1, α2) :

(X0, Y0, f0) → (H,Y, 0) is a K-monomorphism. Then, f0 = 0 and α1 : X0 → H ,

α2 : Y0 → Y are monomorphisms. Note that X0 is a semisimple submodule of H

and Y0 is a semisimple submodule of Y . Since H and Y are pseudo semisimple-

injective, there exist an endomorphism β1 of H and β2 of Y such that β1 is an

extension of α1 and β2 is an extension of α2. One can check that β = (β1, β2) is an

endomorphism of (H,Y, 0) and it is an extension of α.



654 Nguyen Thi Thu Ha

Let (X,Y, f) be a rightK-module. Then, we have the followingR-homomorphism

f̃ : X −→ HomS(M,Y )

x 7−→ f̃(x) : M → Y

m 7→ f̃(x)(m) = f(x⊗m)

Proposition 2.28. Let K =

(

R M

0 S

)

and (X,Y, f) be a right K-module. If

(1) Y is a pseudo semisimple-injective right S-module and

(2) f̃ is an isomorphism of right R-module.

then (X,Y, f) is a pseudo semisimple-injective right K-module.

Proof. Let (X0, Y0, f0) be a semisimple submodule of (X,Y, f) and α = (α1, α2) :

(X0, Y0, f0) → (X,Y, f) is a K-monomorphism. Then, α1 : X0 → X and α2 : Y0 →

Y are monomorphisms with α2 ◦ f0 = f ◦ (α1 ⊗ 1M ). Note that Y0 is a semisimple

submodule of Y . Since Y is a pseudo semisimple-injective module, there exists an

endomorphism β2 of Y such that β2 is an extension of α2.

Fix x ∈ X . For anym ∈M , set θ(m) = β2(f(x⊗m)). It follows that θ : M → Y

is an S-homomorphism. By assumption there exists a unique element x′ ∈ X such

that f̃(x′) = θ. Then, for all m ∈M we have

f(x′ ⊗m) = f̃(x′)(m) = θ(m) = β2(f(x⊗m))

We define β1 : X → X via β1(x) = x′. One can check that β1 is an R-

homomorphism and satisfies f ◦ (β1 ⊗ 1M ) = β2 ◦ f . This means that β = (β1, β2) :

(X,Y, f) → (X,Y, f) is a K-homomorphism. Next, we show that β1 extends

α1. In fact, for any x0 ∈ X0 and for all m ∈ M , we have (α2 ◦ f0)(x0 ⊗ m) =

f ◦ (α1 ⊗ 1M )(x0 ⊗ m) or β2 ◦ f(x0 ⊗ m) = f(α1(x0) ⊗ m). It follows that

f(β1(x0) ⊗m) = f(α1(x0) ⊗m) or f̃(β1(x0)) = f̃(α1(x0)). Since f̃ is an isomor-

phism, β1(x0) = α1(x0). We deduce that β extends α and so, (X,Y, f) is pseudo

semisimple-injective.
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