• Title/Summary/Keyword: M-algorithm

Search Result 3,951, Processing Time 0.033 seconds

Multiple crack evaluation on concrete using a line laser thermography scanning system

  • Jang, Keunyoung;An, Yun-Kyu
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.201-207
    • /
    • 2018
  • This paper proposes a line laser thermography scanning (LLTS) system for multiple crack evaluation on a concrete structure, as the core technology for unmanned aerial vehicle-mounted crack inspection. The LLTS system consists of a line shape continuous-wave laser source, an infrared (IR) camera, a control computer and a scanning jig. The line laser generates thermal waves on a target concrete structure, and the IR camera simultaneously measures the corresponding thermal responses. By spatially scanning the LLTS system along a target concrete structure, multiple cracks even in a large scale concrete structure can be effectively visualized and evaluated. Since raw IR data obtained by scanning the LLTS system, however, includes timely- and spatially-varying IR images due to the limited field of view (FOV) of the LLTS system, a novel time-spatial-integrated (TSI) coordinate transform algorithm is developed for precise crack evaluation in a static condition. The proposed system has the following technical advantages: (1) the thermal wave propagation is effectively induced on a concrete structure with low thermal conductivity of approximately 0.8 W/m K; (2) the limited FOV issues can be solved by the TSI coordinate transform; and (3) multiple cracks are able to be visualized and evaluated by normalizing the responses based on phase mapping and spatial derivative processes. The proposed LLTS system is experimentally validated using a concrete specimen with various cracks. The experimental results reveal that the LLTS system successfully visualizes and evaluates multiple cracks without false alarms.

PIV Measurement of Airflow in a Vertical Channel With Square Heat Source (정방형 발열체를 갖는 수직채널 내부의 공기유동 관한 PIV계측)

  • Bae, S.T.;Kim, D.K.;Kim, S.P.;Cho, D.H.;Lee, Y.H.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.35-41
    • /
    • 1997
  • An experimental study was carried out in a vertical channel with square heat source by visualization equipment with laser apparatus. The image processing system consists of one commercial image board slit into a personal computer and 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system which adopted two-frame grey-level cross correlation algorithm. Heat source was uniform heat flux(5W). The obtained results show various flow patterns such as the kinetic energy distribution and the turbulent kinetic energy distribution.

  • PDF

Development of a Smartphone-based Pupillometer

  • Kim, Tae-Hoon;Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.249-254
    • /
    • 2013
  • In ophthalmology, a pupillometer, a device to measure the diameter of the pupil of the eye, can provide information on the function of the autonomic nervous system. The current pupillometers on the market are either too large to be a handheld instrument, or relatively expensive. In this study, a pupillometer based on a smartphone was designed. Both white and infrared LEDs and a 3M pixel camera of a smartphone were applied for the visual stimuli to an eye and for the acquisition of the eye images, respectively. Contrary to the existing method of pupil measurement that usually observe the variation of pupil diameter, the proposed algorithm in this study was applied to calculate the constriction ratio of the pupillary area in response to pupillary light reflex. The results showed that the constriction ratio of the pupillary area were all in the normal range (above 4.0) from the sixteen healthy participants. It is believed that the approach to pupil measurement used in this study is suitable for a mobile interface, and this system can be applied to clinical research, home-use healthcare, and distributed to some areas which suffer from problems like a lack of medical support.

An Algorithm for Leak Locating using Coupled Vibration of Pipe-Water (배관-유체 연성진동을 이용한 누수지점 탐지알고리듬 개발연구)

  • Lee, Yeong-Seop;Yun, Dong-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.985-990
    • /
    • 2004
  • Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband noise from a leak location and can be propagated to both directions of water pipes. This sound propagation due to leak in water pipelines is not a non-dispersive wave any more because of the surrounding pipes and soil. However, the necessity of long-range detection of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretically analyzed and the wave velocity was confirmed with experiment. The leak locations were identified both by the acoustic emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detection for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested, and a long-range detection has been achieved at real underground water pipelines longer than 300m.

  • PDF

Efficient and accurate prediction of flat plate trailing edge noise using semi-analytic model for point pressure spectra (점 압력 스펙트럼에 대한 준-이론 모델을 사용한 효율적이고 정확한 평판 뒷전 소음의 예측)

  • Lee, Gwang-Se;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.45-54
    • /
    • 2012
  • In order to predict trailing edge noise from a flat plate more effectively and accurately, the prediction algorithm based on semi-analytic model for point pressure spectrum is proposed. The semi-analytic model consists of empirical models for point pressure spectra and theoretical model to determine the boundary layer characteristics needed for the empirical models. The proposed methods are applied to predict the trailing edge noise of the flat plate located in the mean flow of speed 38 m/s, for which the measured data are available. In present study, six empirical models for point pressure spectra are utilized for the predictions of trailing edge noise and their prediction results are compared to the measured data. Through the analysis of these comparisons, it is revealed that the present method based on non-frozen formula using Efimtsov model and Smol'yakov-Tkachenko model can provide more accurate and efficient predictions of trailing edge noise.

  • PDF

A Numerical and Experimental Study of Surface Deflections in Automobile Exterior Panels (자동차 외판의 미세면굴곡 거동의 수치해석적 평가)

  • Park, Chun-Dal;Chung, Wan-Jin;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.134-141
    • /
    • 2006
  • Surface deflections have a great effect on the external appearance of automobiles. Usually, they are occurred on large flat panels containing sudden shape changes and of very small size about $\pm$30$\sim$300$\mu$m. Since the current numerical method is not sufficient for predicting these defects, the correction of these defects still depends on trial and error, which requires a great deal of time and expense. Consequently, developing the numerical method to predict and prevent these defects is very important far improving cosmetic surface qualities. In this study, an evaluation system that can analyze surface deflections using numerical simulation and a visualization system are reported. To calculate the surface deflections numerically, robust algorithms and simulation methodologies are suggested and to visualize them quantitatively, the curvature variation algorithm is proposed. To verify the developed systems, the experimental die of the handle portion of exterior door is analyzed. The results showed that the experimental and simulational visualization are in good agreement. Compensation methods to correct the surface deflections are also tested. The evaluation system proposed in this paper could be used to predict and minimize the occurrence of surface deflections in die manufacturing.

A Study of Smoke Movement in an Enclosed Corridor. (밀폐된 복도 공간내의 연기 거동에 관한 연구)

  • 김성찬;유홍선;정진용;김충익
    • Fire Science and Engineering
    • /
    • v.13 no.2
    • /
    • pp.18-25
    • /
    • 1999
  • There are a lot of works for predicting smoke movement in a building experimentally and m numerically. It is Vel${\gamma}$ important to predict a smoke movement in a corridor which is c connected to adjacent spaces. A numerical analysis of smoke movement in an enclosed c corridor is perlormed by a field model. The used field model is develo야d with 3-D u unstructured meshes, PISO Algorithm and buoyant plume model. In this study, tern야~ature a and flow field, some important p하ameters such as smoke spread time, hot layer temperature, c ceiling jet velocity were compared with experimental data which were perlormed in Korea I Ins디tute of Machinery and Materials. And average velocity of ceiling jet by this study is c compared with Hinkley's formula. This paper shows a flow characteristic around the soffit a and average velocity of ceiling jet is i따luenced by geometry of corridor, heat output, and d distance from the fire source.

  • PDF

Exploring the temporal and spatial variability with DEEP-South observations: reduction pipeline and application of multi-aperture photometry

  • Shin, Min-Su;Chang, Seo-Won;Byun, Yong-Ik;Yi, Hahn;Kim, Myung-Jin;Moon, Hong-Kyu;Choi, Young-Jun;Cha, Sang-Mok;Lee, Yongseok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.70.1-70.1
    • /
    • 2018
  • The DEEP-South photometric census of small Solar System bodies is producing massive time-series data of variable, transient or moving objects as a by-product. To fully investigate unexplored variable phenomena, we present an application of multi-aperture photometry and FastBit indexing techniques to a portion of the DEEP-South year-one data. Our new pipeline is designed to do automated point source detection, robust high-precision photometry and calibration of non-crowded fields overlapped with area previously surveyed. We also adopt an efficient data indexing algorithm for faster access to the DEEP-South database. In this paper, we show some application examples of catalog-based variability searches to find new variable stars and to recover targeted asteroids. We discovered 21 new periodic variables including two eclipsing binary systems and one white dwarf/M dwarf pair candidate. We also successfully recovered astrometry and photometry of two near-earth asteroids, 2006 DZ169 and 1996 SK, along with the updated properties of their rotational signals (e.g., period and amplitude).

  • PDF

Development of Uninterruptible Power Supply with Voltage Sag Restorer Function (순시전압강하 보상 기능을 가지는 무정전전원공급장치의 개발)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • In this paper, UPS, with a built-in instantaneous sag drop compensation features, was developed to improve performance. The improved UPS, using instantaneous moving average method, compensates by quickly measuring the voltage and series inverter of half-bridge type, using line-interactive method that links with the voltage of the battery and power source, was developed. In addition, by developing a parallel inverter that uses a high-efficiency PWM switching method, overall UPS system was enhanced. To verify the performance of the proposed algorithm, single-phase 5[kVA] UPS systems were designed and the experimental system was constructed. The low-cost type of Cortex-M3 module CPU STM32F103R8T6 (32[bit]) is attached and the switching time of mode transfer was set within 4 [ms]. THD of the linear load operates in less than 3[%], and the stability of the output voltage operates in approximately ${\pm}2[%]$ range. The superior performance of the operations was confirmed with the system set as above.

CAVITATION FLOW ANALYSIS OF HYDROFOIL WITH CHANGE OF ANGLE OF ATTACK (받음각 변화에 대한 수중익형의 캐비테이션 해석)

  • Kang, T.J.;Park, W.G.;Jung, C.M.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.17-23
    • /
    • 2014
  • Cavitation causes a great deal of noise, damage to components, vibrations, and a loss of efficiency in devices, such as propellers, pump impellers, nozzles, injectors, torpedoes, etc. Thus, the cavitating flow simulation is of practical importance for many engineering systems. In the present work, a two-phase flow solver based on the homogeneous mixture model has been developed. The solver employs an implicit preconditioning, dual time stepping algorithm in curvilinear coordinates. The flow characteristics around Clark-Y hydrofoil were calculated and then validated by comparing with the experimental data. The lift and drag coefficients with changes of angle of attack and cavitation number were obtained. The results show that cavity length and lift, drag coefficient increase with increasing angle of attack.