• Title/Summary/Keyword: M-S manipulator

Search Result 44, Processing Time 0.037 seconds

The Study of Gain Optimization of Sliding Model Controller with Sliding Perturbation Observer by using of Genetic Algorithm

  • K.S. You;Park, M.K.;Lee, M.C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.495-495
    • /
    • 2000
  • The Stewart platform manipulator is a closed-kinematis chain robot manipulator that is capable of providing high st겨ctural rigidity and positional accuracy. However, this is a complex structure, so controllability of the system is not so good. In this paper, it introduces a new robust motion control algorithm using partial state feedback for a class of nonlinear systems in the presence of modelling uncertainties and external disturbances. The major contribution of this work introduces the development and design of robust observer for the slate and the perturbation w.hich is integrated into a variable structure controller(VSC) structure. The combination of controller/observer gives rise to the robust routine called sliding mode control with sliding perturbation observer(SMCSPO). The optimal gains of SMCSPO are easily obtained by genetic algorithm. Simulation and experiment are presented in order to apply to the stewart platform manipulator. There results show highly' accuracy and performance.

  • PDF

Obstacle Avoidance of Redundant Manipulator Using Potential and AMSI

  • Ikeda, K.;Minami, M.;Mae, Y.;Tanaka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.740-745
    • /
    • 2005
  • This study is intended to build a controller of redundant manipulators with the simultaneous abilities of trajectory tracking and obstacle avoidance without any preparations of path planning to achieve full automation even for one production of one kind, while keeping the avoidance ability high and keeping its shape away from object to reduce the possibility that the manipulator crashes to the object. To evaluate the avoidance ability of the intermediate link, we proposed a scalar value of Avoidance Manipulability Shape Index(AMSI), which is independent of the obstacle's shape. On the other hand, the danger to crash to the obstacle is depending on the shape of the obstacle, which could be evaluated by the potential field set around the obstacle. This paper proposes control method of the manipulator's shape based on the AMSI to simultaneously avoid obstacles and keep the avoidance ability high with potential.

  • PDF

DEVELOPMENT OF A PERSIMMON HARVESTING SYSTEM

  • Kim, S. M.;Park, S. J.;Kim, C. S.;Kim, M. H.;Lee, C. H.;J. Y. Rhee
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.472-479
    • /
    • 2000
  • A persimmon harvesting vehicle that can be operated in hilly orchards as well as a manipulator that can be used to harvest persimmons located in remote positions in the trees were designed and developed. The vehicle could be operated with keeping balanced position in an inclined field and its working platform could be moved up and down easy to approach fruits in a remote region with the aids of a hydraulic and a electrical and electronics systems. The weight of the vehicle was 927 kg and the center of gravity was located at 427 mm to the inner side from the center of a right driving caterpillar, 607 mm to a rear axle from the center of a front axle, and 562 mm to upward from ground. The automatic level control sensor for leveling the working platform was activated within 14.5 ∼ 16.5 degrees of slope variation. The total length of the manipulator was 1.39 m and weight is 975 g. It was powered by a 12 V geared motor to detach persimmon fruits with a rotational force. The gripper was made of plastic and rubber to increase a frictional force. In a performance evaluation test, static tipping angle, dynamic tipping angle toward front side when the vehicle was moving downward, climbing angle, driving speed of the vehicle were measured or calculated. In persimmon harvesting tests 24.9% of yield was increased by hand picking with the aid of the vehicle and additional 7% of yield were increased when the manipulator was used. Therefore, 99010 of total possible yield was achievable when both of the vehicle and the manipulator were used for the manual persimmon harvesting. Increase in 22.5% of total yield was achieved with the manipulator only.

  • PDF

Design of Remote Manipulator Control System using PHANToM Device (PHANToM Device 를 이용한 다관절 로봇의 원격제어 시스템 설계)

  • 김현상;김미경;강희준;서영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.241-245
    • /
    • 2004
  • This paper shows the development of remote control system for manipulators which consists of PHANToM Device as a master, Samsung FARA robot as a slave and TCP/IP based LAN for their Communication. This work includes the motion mapping between the master and the slave, Generation of virtual viscosity force preventing operator s unwilled action and 3D remote control simulators for the stable operation of the remote control system, etc. The remote control implementation has been performed and the results shows that the developed system can allow the operator to effectively control the manipulator.

  • PDF

Design of Remote Manipulator Control System using PHANToM Device (PHANToM Device를 이용한 다관절 로봇의 원격제어 시스템 설계)

  • Kim, Hyun-Sang;Kang, Hee-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.595-597
    • /
    • 2005
  • This paper shows the development of remote control system for manipulators which consists of PHANToM Device as a master, Samsung FARA robot as a slave and TCP/IP based LAN fortheir Communication. This work includes the motion mapping between the master and the slave, Generation of virtual viscosity force preventing operator's unwilled action and 3D remote control simulators for the stable operation of the remote control system, etc. The remote control implementation has been performed and the results shows that the developed system can allow the operator to effectively control the manipulator.

  • PDF