• Title/Summary/Keyword: M-1 & S-1 cortex

Search Result 105, Processing Time 0.025 seconds

Preparation of Alzheimers Animal Model and Brain Dysfunction Induced by Continuous $\beta$-Amyloid Protein Infusion

  • Akio Itoh;Kiyofumi Yamada;Kim, Hyoung-Chun;Toshitaka Nabeshima
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.47-57
    • /
    • 2001
  • Alzheimer's disease (AD) is the most common cause of dementia in the elderly, and its pathology is characterized by the presence of numerous numbers of senile plaques and neurofibrillary tangles. Several genetic and transgenic studies have indicated that excess amount of $\beta$-amyloid protein (A$\beta$) is produced by mutations of $\beta$TEX>$\beta$-amyloid precursor protein and causes learning impairment. Moreover, $A\beta$ has a toxic effect on cultured nerve cells. To prepare AD model animals, we have examined continuous (2 weeks) infusion of $A\beta$ into the cerebral ventricle of rats. Continuous infusion of $A\beta$ induces learning impairment in water maze and passive avoidance tasks, and decreases choline acetyltransferase activity in the frontal cortex and hippocampus. Immunohistochemical analysis revealed diffuse depositions of $A\beta$ in the cerebral cortex and hippocampus around the ventricle. Furthermore, the nicotine-evoked release of acetylcholine and dopamine in the frontal cortex/hippocampus and striatum, respectively, is decreased in the $A\beta$-infused group. Perfusion of nicotine (50 $\mu\textrm{M}$) reduced the amplitude of electrically evoked population spikes in the CA1 pyramidal cells of the control group, but not in those of the $A\beta$-infused group, suggesting the impairment of nicotinic signaling in the $A\beta$-infused group. In fact, Kd, but not Bmax, values for [$^3H$] cytisine binding in the hippocampus significantly increased in the $A\beta$-infused rats. suggesting the decrease in affinity of nicotinic acetylcholine receptors. Long-term potentiation (LTP) induced by tetanic stimulations in CA1 pyramidal cells, which is thought to be an essential mechanism underlying learning and memory, was readily observed in the control group, whereas it was impaired in the $A\beta$-infused group. Taken together, these results suggest that $A\beta$ infusion impairs the signal transduction mechanisms via nicotinic acetylcholine receptors. This dysfunction may be responsible, at least in part, for the impairment of LTP induction and may lead to learning and memory impairment. We also found the reduction of glutathione- and Mn-superoxide dismutase-like immunoreactivity in the brains of $A\beta$-infused rats. Administration of antioxidants or nootropics alleviated learning and memory impairment induced by $A\beta$ infusion. We believe that investigation of currently available transgenic and non-transgenic animal models for AD will help to clarify the pathogenic mechanisms and allow assessment of new therapeutic strategies.

  • PDF

SPECT Imaging of Dopamine Transporter with [I-123] IPT in Normal Controls and Parkinson's Patients (정상인과 파킨슨병 환자에서 [I-123]IPT SPECT를 이용한 도파민 재섭취부위의 영상화)

  • Sohn, Hyung Sun;Kim, Euy Neyng;Lee, Kyung Jin;Rha, Hyung Keun;Son, Byung Chul;Choi, Chang Rhack
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.342-348
    • /
    • 2001
  • Objective : Dopamine transporter concentrations have been known to decrease in Parkinson's disease(PD). The aim of the present study was to evaluate the correlation between SPECT measurements of [I-123]N-(3-iodopropene-2-yl)-$2{\beta}$-carbomethoxy-$3{\beta}$-(4-chlorophenyl) tropane(IPT) as an imaging agent for measuring changes in transporter concentrations with PD. Patients and Methods : IPT labelled with $4.87{\pm}1.29mCi$($180.19{\pm}47.73MBq$) of [I-123] was intravenously injected into 23 patients(age : $58{\pm}12$) with PD and three normal controls(NC)(age : $37{\pm}7$) as bolus. Brain SPECT were then performed at 1 hour and 2 hours after injection on a double headed camera. The statistical parameters were the contrast ratio of left basal ganglia(BG) and right basal ganglia to occipital cortex(OCC) per milli curies of injected radiotracer at 1 hour and 2 hours. The correlations were evaluated between these parameters and Hoehn-Yahr classification of the patients. Results : The(BG - OCC)/OCC/mCi ratios at 1 hour and 2 hours for PD and NC were $0.14{\pm}0.07$ and $0.27{\pm}0.07$(1 hour) and $0.12{\pm}0.07$ and $0.34{\pm}0.04$(2 hour), respectively. The(BG - OCC)/OCC/mCi ratios of Parkinson's disease were decreased with higher grade of Hoehn-Yahr classification of the patients. The ratio between BG and OCC for PD were clearly separated from NC and may be useful outcome measures for clinical diagnosis. Conclusion : The findings suggest that IPT may be a very useful tracer for early diagnosis and treatment of PD and study of dopamine re-uptake site.

  • PDF

A Study on the Change of Urinary Catecholamine Sexcretion due to Noise Stress (소음(騷音) Stress에 의한 요(尿)중 Catecholamine의 분비량(分泌量) 변화(變化))

  • Kim, Hyung-Suk;Chun, Joon-Bae;Lundberg, Ulf
    • Journal of Preventive Medicine and Public Health
    • /
    • v.26 no.4 s.44
    • /
    • pp.565-573
    • /
    • 1993
  • Noise is not only affecting the ear and the auditory cortex locally, but its influence is widely spread throughout the brain structures, e. g., the reticular formation, the brain stem nuclei or the subcortical forebrain area. Hence, any of the organism's activities can be hindered or stimulated by noise. High noise is a stressor and the catecholamine level can be used both as a stress marker and as an indicator of modified sympathetic nervous system activity. Several recent studies have found that the urinary excretion of catecholamines is increased due to high noise intensity, especially unexpectedly high and long lasting noise. The present study was conducted in order to examine the effects of noise stress on urinary excretion of ctecholamines in rats and humans. Rats were exposed to 90 dB noise for 10, 30, and 60 minutes, 3 and 12 hours. 24 hour . urinary samples were collected and the catecholamones were extracted by alumina and analyzed by HPLC-ECD. Catecholamine levels increased with time of exposure up to 60 minutes : norepinephrine concentration at 60 min of noise=1.038 ng/ml, epinephrine=0.636 ng/ml. Urine catecholamines of blue collar workers exposed to 90 dB of noise at the work place were collected between 2 and 4 p.m. and compared to that of white collar workers exposed to 70 dB. Mean norepinephrine level of the blue collar workers was 0.89 ng/ml (${\pm}0.25$), epinephrine 0.24ng/m1 (${\pm}0.09$), and that of the white collar workers 0.48 ng/ml (${\pm}0.12$), epinephrine 0.19 ng/ml(${\pm}0.05$). It was concluded that noise acts as a stressor and increases the catecholamine levels in both rats and humans.

  • PDF

Effect of Applying tDCS by Inactive Electrode Placement to Cognitive Response on Stroke Patients (경피두개직류자극 적용 시 비활성 전극의 위치가 뇌졸중 환자의 인지반응에 미치는 영향)

  • Hwang, Ki-Kyeong;Lee, Jeong-Woo
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.11 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • Purpose : This study was to identify the effect of cognitive reaction following inactive electrode placement when applying anodal transcranial direct current stimulation over the primary motor cortex. Methods : For this study a total of 28 stroke patients participated. Before applying transcranial direct current stimulation, cognitive reaction was measured (P300 of event related potential, cognitive reaction time), and subjects were randomly assigned to two group. Transcranial direct current stimulation was applied to the scalp with an intensity of $0.04mA/cm^2$ for 15 minutes. All subjects were given an anode transcranial direct current stimulation over the primary motor area and inactive electrodes over the deltoid muscle (group I) and supra-orbital area (group II). Cognitive reactions were measured after applying transcranial direct current stimulation. Results : For this study a total of 28 stroke patients participated. Before applying transcranial direct current stimulation, cognitive reaction was measured (P300 of event related potential, cognitive reaction time), and subjects were randomly assigned to two group. Transcranial direct current stimulation was applied to the scalp with an intensity of $0.04mA/cm^2$ for 15 minutes. All subjects were given an anode transcranial direct current stimulation over the primary motor area and inactive electrodes over the deltoid muscle (group I) and supra-orbital area (group II). Cognitive reactions were measured after applying transcranial direct current stimulation. Conclusion : Thus transcranial direct current stimulation on the primary motor area may help cognitive reaction regardless of inactive electrode placement.

c-fos mRNA Expression in the Vestibular System following Hypergravity Stimulation in Rats

  • Jin Guang-Shi;Lee Jae-Hyo;Lee Jae-Hee;Lee Moon-Young;Kim Min-Sun;Jin Yuan Zhe;Song Jeong-Hoon;Park Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Altered environmental gravity, including both hypo- and hypergravity, may result in space adaptation syndrome. To explore the characteristics of this adaptive plasticity, the expression of immediate early gene c-fos mRNA in the vestibular related tissues following an exposure to hypergravity stimulus was determined in rats. The animals were subjected to a force of 2 g (twice earth's gravity) for 1, 3, or 12 h, and were examined poststimulus at 0, 2, 6, 12, and 24 h. RT-PCR (reverse transcription polymerase chain reaction) and real-time quantitative RT-PCR were adopted to analyze temporal changes in the expression of c-fos mRNA. The hypergravity stimulus increased the expression of c-fos mRNA in the vestibular ganglion, medial vestibular nucleus, inferior vestibular nucleus, hippocampus, cerebellum, and cortex. The peak expression occurred at 0 h poststimulation in animals stimulated with hypergravity for 1 h, and at 6 h poststimulus in those stimulated for 3 h. In contrast, those stimulated for 12 h exhibited dual peaks at 0 and 12 h poststimulus. Bilateral labyrinthectomy markedly attenuated the degree of c-fos mRNA expression. Glutamate receptor antagonist also dramatically attenuated the degree of c-fos mRNA expression. These results indicate that expression of c-fos mRNA in response to hypergravity occurs in the vestibular related tissues of the central nervous system, in which peripheral vestibular receptors and glutamate receptors play an important role. The temporal pattern of c-fos mRNA expression depended on the duration of the hypergravity stimulus.

Induction of Neuron-derived Orphan Receptor-1 in the Dentate Gyrus of the Hippocampal Formation Following Transient Global Ischemia in the Rat

  • Kim, Younghwa;Hong, Soontaek;Noh, Mi Ra;Kim, Soo Young;Huh, Pil Woo;Park, Sun-Hwa;Sun, Woong;Kim, Hyun
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.8-12
    • /
    • 2006
  • Neuron-derived orphan receptor (NOR-1) is a member of the thyroid/steroid receptor superfamily that was originally identified in forebrain neuronal cells undergoing apoptosis. In addition to apoptotic stimuli, activation of several signal transduction pathways including direct neuronal depolarization regulates the expression of NOR-1. In this study we tested whether the expression of NOR-1 is changed following transient ischemic injury in the adult rat brain. NOR-1 mRNA increased rapidly in the dentate gyrus of the hippocampal formation and piriform cortex 3 h after transient global ischemia and returned to basal level at 6 h. On the other hand, oxygen-glucose deprivation of cultured cerebral cortical neurons did not alter the expression of NOR-1. These results suggest that expression of NOR-1 is differentially regulated in different brain regions in response to globally applied brain ischemia, but that hypoxia is not sufficient to induce its expression.

Effect of Dietary Fatty Acid and Vitamin E Supplementation in Antioxidant Systmes of the Second Generation Rat Brain Sections (식이지방산 조성 및 비타민 E의 보충이 제 2 세대 흰 쥐 뇌조직의 항산화 체계에 미치는 영향)

  • 황혜진;엄영숙;정은정;김수연;이양자
    • Journal of Nutrition and Health
    • /
    • v.34 no.1
    • /
    • pp.14-22
    • /
    • 2001
  • In this study, we examined the effects of dietary fatty acids and vitamin E supplementation on antioxidant systems in the rat brain regions. The Sprague Dawley rats were fed the experimental diets 3-4 wks prior to the conception. Experimental diet consisted of 10% fat(wt/wt) which were safflower oil(SO, poor in $\omega$3 fatty acids), mixed oil(MO, P/M/S ratio=1.03:1.45:1,$\omega$6/$\omega$3 ratio=6.3) and mixed oil supplemented with vitamin E(ME:MO+500mg vitamin E/kg diet). At 3 and 9 weeks of age of the newborn rats, frontal cortex(FC), corpus striatum(CS), hippocampus(H) cerebellum(CB) were dissected out from the whole brain. Activities of glutathione peroxidase(GSH-P(sub)x, superoxide dismutase(SOD) concentrations of malondialdehyde(MDA) were mesaured. Dietary fatty acids were not effective in antioxidative system for rat brain. However, when vitamin E was supplemented to the diet(ME), the activities of GSH-P(suh)x tended to increase in comparison to MO group. Therefore, the activites of GSH-P(suh)x of FC and H at the age of 3 weeks showed significant differences(p<0.05). The activities of Total-SOD tended to decrease in ME group compared to MO group. There were significant differences(p<0.05) in FC and CS at the age of 3 weeks. The activities of Mn-SOD tended to increase and Cu, Zn-SOD tended to decrease when vitamin E was supplemented. The activity levels of antioxidative enzymes at the age of 3 weeks and 9 weeks were similar. This suggested that the activity level of antioxidative enzymes reached to the adult level at the age of 3 weeks which is the end point of lactation period. The concentrations of MDA were not altered by experimental diets. When the activities of antioxidant enzymes were compared, the activities of antioxidant enzymes were the lowest in H and FC. In conclusion, the antioxidative system were not altered by dietary fatty acid at the age of 3 weeks and 9 weeks, but the supplementation of vitamin E altered the antioxidative systems. Therefore, these findings should be considered comprehensively in scope of the balance of various antioxidative systems and their interactions(Korean J Nutrition 34(1):14-22, 2001)

  • PDF

Protective Effect of Gatrodiae Rhizoma Extracts on the LPS-Induced Cognitive Impairment Model (LPS에 의해 유도된 인지기능 손상모델에 대한 천마 추출물의 방어효과)

  • Kwon, Kang-Beom;Kim, Ha-Rim;Kim, Ye-Seul;Park, Eun-Hee;Kang, Hyung-Won;Ryu, Do-Gon
    • Journal of Oriental Neuropsychiatry
    • /
    • v.33 no.3
    • /
    • pp.277-285
    • /
    • 2022
  • Objectives: Gastrodia elata (GE) has been used to treat cognition impairment, including Alzheimer's disease (AD) in Korea. The purpose of this study was to investigate the effects of GE water extracts (GEE) on the lipopolysaccharide (LPS)-induced AD model in mice. (Aβ). Methods: We classified six groups as follow; group 1: control (CON), group 2: LPS (0.5 mg/kg/day, four times), group 3: 4 mg/kg donepezil (DP), group 4: 100 mg/kg GEE+LPS, group 5: 200 mg/kg GEE+LPS, group 6: 500 mg/kg GEE+LPS. Results: We found that GEE has an effect that inhibits decrease of discrimination index in object recognition test, as well as spontaneous alteration in the Y-maze test by LPS. Treatment with LPS increased amlyloid-β (Aβ) concentration, and decreased brain-derived neurotrophic factor (BDNF) in cerebral cortex of mice. However, GEE significantly protected against LPS-induced Aβ and BDNF changes. Our findings also showed that the inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β)] mRNA and protein were up-regulated by the LPS injection. But GEE significantly suppressed LPS-induced inflammatory cytokines increase in a dose-dependent manner. Conclusions: This study suggests that the GEE may be an effective AD therapeutic agent, in treating neurodegenerative diseases including AD.

Interaction of Sodium Selenite on Neurotoxicity Induced by Methylmercuric Chloride (유기수은의 신경독성에 대한 셀레늄의 보상작용)

  • Park, J.S.;Lee, H.M.;Chung, Y.;Shin, D.C.;Roh, J.H.;Moon, Y.H.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.25 no.1 s.37
    • /
    • pp.13-25
    • /
    • 1992
  • This study was conducted to investigate the mechanism of protective effect by sodium selenite in methylmercuric chloride neurotoxicity, increasing intracellular $Ca^{2+}$concentration of the neuron. Methylmercuric chloride of 3mg/kg of body weight was administered simultaneously with sodium selenite of 5mg/kg and pretreatment of sodium selenite via intraperitoneal injection to rats. Also, effect of methylmercuric chloride($25{\mu}M,\;50{\mu}M,\;100{\mu}M$) and sodium selenite($200{\mu}M$) on free intrasynaptosomal $Ca^{2+}$ concentration were studied using the fluorescent $Ca^{2+}$ indicator fura -2 in vitro. After the treatment, at 6, 24, and 48 hours later, mercury in the cerebral cortex, liver and kidney tissues, succlnic dehydrogenase activities, adenosin-5'-triphosphate concentration, acetylcholinesterase activities, and intracellular $Ca^{2+}$ concentration in the cerebral cortex were determined in vivo. Cerebral synaptosomes of rats were incubated with methylmercuric chloride and sodium selenite in Hepes buffer for 10 minutes and free intrasynaptosomal $Ca^{2+}$ concentration were measured with fura-2 in vitro. The results were summarized as follows ; 1. The combined administration of $CH_3HgCl$ and $Na_2SeO_3$ and pretreatment of $Na_2SeO_3$ according to time significantly more increased in the cerebral cortex and decreased in the liver, kidney mercury concentrations compared to the administration of $CH_3HgCl$ only. 2. The combined administration of $CH_3HgCl$ and $Na_2SeO_3$ and pretreatment of $Na_2SeO_3$ increased more succinic dehydrogenase and acetylcholinesterase activities compared to the administration of $CH_3HgCl$ only. Particularly pretreatment of $Na_2SeO_3$ significantly more compared to the administration of $CH_3HgCl$ only. The concentration of adenosine-5'-triphosphate in $Na_2SeO_3$ treatment groups revealed a favourable effect compared to the administration of $CH_3HgCl$ only. 3. Intracellular $Ca^{2+}$ concentration in administration of $CH_3HgCl$ only was increased significantly more than control group in all test hours but was increased significantly more at 48 hours only after treatment in combined administration of $CH_3HgCl$ and $Na_2SeO_3$ and pretreatment of $Na_2SeO_3$ according to time interval more decreased significantly intracellular $Ca^{2+}$ concentration compared to the administration of $CH_3HgCl$ only. 4. Free intrasynaptosomal $Ca^{2+}$ concentration in the combined administration of $CH_3HgCl$ and $Na_2SeO_3$ was decreased ($24%{\sim}40%$) significantly more than the administration of $CH_3HgCl$ only. From the above results, the specific dosage of $Na_2SeO_3$ decreased increment of intracellular $Ca^{2+}$ concentration induced by administration of $CH_3HgCl$. These findings suggest the protective mechanism of $Na_2SeO_3$ on the neurotoxicity of $CH_3HgCl$.

  • PDF

Growth Damage and Alteration of Cellular Tissue of Barley Infected by Barley yellow mosaic virus (보리호위축병 (Barley yellow mosaic virus)에 의한 보리의 생육 피해 및 세포학적 변화)

  • Park, Jong-Chul;Lee, Jae-Dong;Seo, Jae-Hwan;Kim, Yang-Kil;Jeong, Seon-Gi;Kim, Hyung-Moo
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.34-38
    • /
    • 2004
  • The damage of plant growth and alteration of cellular tissues of barley infected by Barley yellow mosaic virus (BaYMV) was explored. The infected plots significantly damaged in all of measured factors by the disease. In severely diseased plant, the viral infection affected on plant growth like as shorten culm length about 25cm, 36% constrained ratio, comparing to healthy. The yield decreased over 70% in diseased plots by fewer numbers of spike and kernel per square meter and spike, respectively. BaYMV constructed typical inclusion body like a pinwheel type inside barley leaves, and the infection affected on cellular elongation or growth not cell division in examined three parts as stem, neck of panicle and node, related to dwarfness of infected barley. The stem tissues were most severely affected on cell growth as restrained epidermis cell length in diameter and vascular bundle size. In neck of panicle tissues, distribution and size of tissues of fiber and cortex parts, respectively, showed differences between healthy and infected plants. In node part, healthy plant showed bigger tissue size as 1.5 times than infected plant. Theses results suggest that BaYMV infection could affect on the cell growth not cell division, and which resulted shorten culm length in plant growth and decreased yield, finally.