c-fos mRNA Expression in the Vestibular System following Hypergravity Stimulation in Rats

  • Jin Guang-Shi (Department of Physiology, Wonkwang University School of Medicine and Vestibulocochlear Research Center at Wonkwang University) ;
  • Lee Jae-Hyo (Department of Physiology, Wonkwang University School of Medicine and Vestibulocochlear Research Center at Wonkwang University) ;
  • Lee Jae-Hee (Department of Physiology, Wonkwang University School of Medicine and Vestibulocochlear Research Center at Wonkwang University) ;
  • Lee Moon-Young (Department of Physiology, Wonkwang University School of Medicine and Vestibulocochlear Research Center at Wonkwang University) ;
  • Kim Min-Sun (Department of Physiology, Wonkwang University School of Medicine and Vestibulocochlear Research Center at Wonkwang University) ;
  • Jin Yuan Zhe (Department of Physiology, Yanbien University College of Medicine) ;
  • Song Jeong-Hoon (Department of Plastic and Reconstructive Surgery, Wonkwang University School of Medicine) ;
  • Park Byung-Rim (Department of Physiology, Wonkwang University School of Medicine and Vestibulocochlear Research Center at Wonkwang University)
  • Published : 2007.02.28

Abstract

Altered environmental gravity, including both hypo- and hypergravity, may result in space adaptation syndrome. To explore the characteristics of this adaptive plasticity, the expression of immediate early gene c-fos mRNA in the vestibular related tissues following an exposure to hypergravity stimulus was determined in rats. The animals were subjected to a force of 2 g (twice earth's gravity) for 1, 3, or 12 h, and were examined poststimulus at 0, 2, 6, 12, and 24 h. RT-PCR (reverse transcription polymerase chain reaction) and real-time quantitative RT-PCR were adopted to analyze temporal changes in the expression of c-fos mRNA. The hypergravity stimulus increased the expression of c-fos mRNA in the vestibular ganglion, medial vestibular nucleus, inferior vestibular nucleus, hippocampus, cerebellum, and cortex. The peak expression occurred at 0 h poststimulation in animals stimulated with hypergravity for 1 h, and at 6 h poststimulus in those stimulated for 3 h. In contrast, those stimulated for 12 h exhibited dual peaks at 0 and 12 h poststimulus. Bilateral labyrinthectomy markedly attenuated the degree of c-fos mRNA expression. Glutamate receptor antagonist also dramatically attenuated the degree of c-fos mRNA expression. These results indicate that expression of c-fos mRNA in response to hypergravity occurs in the vestibular related tissues of the central nervous system, in which peripheral vestibular receptors and glutamate receptors play an important role. The temporal pattern of c-fos mRNA expression depended on the duration of the hypergravity stimulus.

Keywords

References

  1. Akbarian S, Grusser OJ, Guldin WO. Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey. J Comp Neurol 339: 421-437, 1994 https://doi.org/10.1002/cne.903390309
  2. Azuma Y, Ogita K, Yoneda Y. Particular nuclear transcription factors responsive to systemic administration of kainic acid in murine brain. Neurochem Int 29: 289-299, 1996 https://doi.org/10.1016/0197-0186(95)00157-3
  3. Bading H, Segal MM, Sucher NJ, Dudek H, Lipton SA, Greenberg ME. N-methyl-D-asparate receptors are critical for mediating the effects of glutamate on intracellular calcium concentration and immediate early gene expression in cultured hippocampal neurons. Neuroscience 64: 653-664, 1995 https://doi.org/10.1016/0306-4522(94)00462-E
  4. Bles W, de Graaf B. Postural consequences of long duration centrifugation. J Vest Res 3: 87-95, 1993
  5. Borlongan CV, Sanberg PR. Elevated body swing test: a new behavioral parameter for rats with 6-hydroxydopamine-induced hemiparkinsonism. J Neurosci 15: 5372-5378, 1995 https://doi.org/10.1523/JNEUROSCI.15-07-05372.1995
  6. Boyle R, Mensinger AF, Yoshida K, Usui S, Intravaia A, Tricas T, et al. Neural readaptation to Earth's gravity following return from space. J Neurophysiol 86: 2118-2122, 2001 https://doi.org/10.1152/jn.2001.86.4.2118
  7. Brandt T, Dieterich M. The vestibular cortex. Its locations, functions, and disorders. Ann New York Acad Sci 871: 293-312, 1999
  8. Burkovskaya TE, Krasnov IB. Blood and bone marrow of rats born and grown under hypergravity. Physiologist 34: S139-S140, 1991
  9. Correia MJ. Neuronal plasticity: adaptation and readaptation to the environment of space. Brain Res Rev 28: 61-65, 1998 https://doi.org/10.1016/S0165-0173(98)00043-5
  10. Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64: 477-505, 1995 https://doi.org/10.1016/0306-4522(94)00355-9
  11. d'Ascanio P, Balaban E, Pompeiano M, Centini C, Pompeiano O. Fos and FRA protein expression in rat precerebellar structures during the Neurolab Space Mission. Brain Res Bull 62: 203- 221, 2003 https://doi.org/10.1016/j.brainresbull.2003.09.015
  12. Dobie TG, May JG. Cognitive behavioral management of motion sickness. Aviat Space Environ Med 65(Suppl):C1-C20, 1994
  13. Duflo SGD, Gestreau C, Lacour M. Fos expression in the rat brain after exposure to gravito-inertial force changes. Brain Res 861: 333-344, 2000 https://doi.org/10.1016/S0006-8993(00)02044-8
  14. Fujii MD, Patten BM. Neurology of microgravity and space travel. Neurol Clin 10: 999-1013, 1992 https://doi.org/10.1016/S0733-8619(18)30192-0
  15. Gillespie CF, Van Der Beek EM, Mintz EM, Mickley NC, Jasnow AM, Huhman KL, Albers HE. GABAergic regulation of light-induced c-Fos immunoreactivity within the suprachiasmatic nucleus. J Comp Neurol 411: 683-692, 1999 https://doi.org/10.1002/(SICI)1096-9861(19990906)411:4<683::AID-CNE12>3.0.CO;2-J
  16. Grossman AW, Churchill JD, Bates KE, Kleim JA, Greenough WT. A brain adaptation view of plasticity: is synaptic plasticity an overly limited concept? Prog Brain Res 138: 91-108, 2002 https://doi.org/10.1016/S0079-6123(02)38073-7
  17. Grusser OJ, Kroller J. Responses of dorsal spinocerebellar tract neurons to signals from muscle spindle afferents. Prog Brain Res 50: 91-104, 1979 https://doi.org/10.1016/S0079-6123(08)60810-9
  18. Guldin WO, Grusser OJ. Is there a vestibular cortex? Trends Neurosci 21: 254- 259, 1998 https://doi.org/10.1016/S0166-2236(97)01211-3
  19. Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene espression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Rev 28: 370-490, 1998 https://doi.org/10.1016/S0165-0173(98)00018-6
  20. Ito M, Karachot L. Receptor subtypes involved in, and time course of, the long-term desensitization of glutamate receptors in cerebellar Purkinje cells. Neurosci Res 8: 303-307, 1990 https://doi.org/10.1016/0168-0102(90)90036-E
  21. Jaekel E, Amtmann E, Oyama J. Effect of centrifugation on bone density of the rat. Anat Embryol 151: 223-232, 1997 https://doi.org/10.1007/BF00297483
  22. Jian BJ, Shintani T, Emanuel BA, Yates BJ. Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons. Exp Brain Res 144: 247-257, 2002 https://doi.org/10.1007/s00221-002-1042-8
  23. Kaufman GD, Anderson JH, Beitz AJ. Fos-defined activity in rat brainstem following centripetal acceleration. J Neurosci 12: 4489- 4500, 1992 https://doi.org/10.1523/JNEUROSCI.12-11-04489.1992
  24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2- CT method. Methods 25: 402-408, 2001 https://doi.org/10.1006/meth.2001.1262
  25. Marshburn TH, Kaufman GD, Purcell IM, Perachio AA. Saccule contribution to immediate early gene induction in the gerbil brainstem with posterior canal galvanic or hypergravity stimulation. Brain Res 761: 51-58, 1997 https://doi.org/10.1016/S0006-8993(97)00030-9
  26. Martin WD. Effects of chronic centrifugation on skeletal muscle fibers in young developing rats. Aviat Space Environ Med 51: 473-479, 1980
  27. Mittelstaedt H. Somatic graviception. Biol Psychol 42: 53-74, 1996 https://doi.org/10.1016/0301-0511(95)05146-5
  28. Morgan JT, Curran T. Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12: 459- 462, 1989 https://doi.org/10.1016/0166-2236(89)90096-9
  29. Nakagawa A, Uno A, Horii A, Kitahara T, Kawamoto M, Uno Y, Fukushima M, Nishiike S. Fos induction in the amygdala by vestibular information during hypergravity stimulation. Brain Res 986: 114-123, 2003 https://doi.org/10.1016/S0006-8993(03)03220-7
  30. Nestler EJ, Kelz MB, Chen J. DeltaFosB: a molecular mediator of long-term neural and behavioral plasticity. Brain Res 835: 10-17, 1999 https://doi.org/10.1016/S0006-8993(98)01191-3
  31. Paloski WH, Reschke MF, Black FO, Doxey DD, Harm DL. Recovery of postural equilibrium control following spaceflight. Ann New York Acad Sci 656: 747-754, 1992 https://doi.org/10.1111/j.1749-6632.1992.tb25253.x
  32. Park BR, Soh BS, Kim MS, Lee MY, Kim JH, Chun SW. Resolution of the region of secondary somatosensory cortex that responds to stimulation of the horizontal semicircular canal in rats. Neurosci Res Commun 34: 174-182, 2004 https://doi.org/10.1002/nrc.20013
  33. Park BR, Suh JS, Kim NS, Jeong JY, Chun SW, Lee JH. Influence of sensory deprivation or electrical stimulation on acute vestibular symptoms following unilateral labyrinthectomy in rabbits. Acta Otolaryngol (Stockh) Suppl 519: 162-167, 1995
  34. Pompeiano M, d'Ascanio P, Centini C, Pompeiano O, Balaban E. Short-term (Fos) and long-term (FRA) protein expression in rat locus coeruleus neurons during the neurolab mission: contribution of altered gravitational fields, stress, and other factors. Neuroscience 115: 111- 123, 2002 https://doi.org/10.1016/S0306-4522(02)00402-5
  35. Pompeiano O, d'Ascanio P, Balaban E, Centini C, Pompeiano M. Gene expression in autonomic areas of the medulla and the central nucleus of the amygdala in rats during and after space flight. Neuroscience 124: 53-69, 2004 https://doi.org/10.1016/j.neuroscience.2003.09.027
  36. Pompeiano O, D'Ascanio P, Centini C, Pompeiano M, Balaban E. Gene expression in rat vestibular and reticular structures during and after space flight. Neuroscience 114: 135-155, 2002 https://doi.org/10.1016/S0306-4522(02)00202-6
  37. Ross MD. A spaceflight study of synaptic plasticity in adult rat vestibular maculas, Acta Otolaryngol (Stockh) Suppl 516: 1-14, 1994
  38. Russell NA, Horii A, Smith PF, Darlington CL, Bilkey D. Long-term effects of permanent vestibular lesions on hippocampal spatial firing. J Neurosci 23: 6490-6498, 2003 https://doi.org/10.1523/JNEUROSCI.23-16-06490.2003
  39. Smith PF. Vestibulo-hippocampal interactions. Hippocampus 7: 465- 471, 1997 https://doi.org/10.1002/(SICI)1098-1063(1997)7:5<465::AID-HIPO3>3.0.CO;2-G
  40. Sondag HNPM, de Jong HAA, Oosterveld WJ. The effect of prolonged hypergravity on the vestibular system; a behavioral study. ORL 57: 189-193, 1995 https://doi.org/10.1159/000276737
  41. Stackman RW, Clark AS, Taube JS. Hippocampal spatial representations require vestibular input. Hippocampus 12: 291-303, 2002 https://doi.org/10.1002/hipo.1112
  42. Takeda N, Horii A, Uno A, Morita M, Mochizuki T, Yamatodani A, Kubo T. A ground-based animal model of space adaptation syndrome. J Vest Res 6: 403-409, 1996 https://doi.org/10.1016/S0957-4271(96)00071-7
  43. Thornton WE, Moore TP, Pool S, Vanderploeg J. Clinical characterizationand etiology of space motion sickness. Aviat Space Environ Med 58(Suppl): A1-A8, 1987
  44. Wunder CC, Cook KM, Watkins SR, Moressi WJ. Femur-bending properties as influenced by gravity: 5. strength vs. calcium and gravity in rats exposed for 2 weeks. Aviat Space Environ Med 58: 977-982, 1987
  45. Yates BJ, Holmes MJ, Jian BJ. Plastic changes in processing of graviceptive signals during spaceflight potentially contribute to postflight orthostatic intolerance. J Vest Res 13: 395-404, 2003