• Title/Summary/Keyword: M:N ratio

Search Result 2,080, Processing Time 0.037 seconds

New and Regenerated Production Based on Nitrogen in the southern Part of the Yellow Sea in Late April, 1993. (1993년 4월말 황해 남부 해역의 질소 신생산(新生産)과 재생산(再生産))

  • YANG, SUNG RYULL;SHIN, KYOUNG SOON;YANG, DONG-BEOM
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.258-268
    • /
    • 1994
  • Nitrogenous new production and regenerated production were measured in the southern part of the Yellow Sea (Hwanghae) using a stable isotope /SUP 15/N nitrate and ammonia between April 25∼30, 1993. Nitrogen production varied between 155 and 688 mg N m/SUP -2/ d/SUP -1/, which belongs to meso to eutrophic area values. This is equivalent to 881∼3909 mg C m/SUP -2/ d/SUP -1/, assuming the Redfield ratio for C:N of 5.7:1 (by weight). the f0ratio which is the fraction of new production from primary production, varied between 0.12 and 0.26, indicating that 74 to 88% of primary production was supported by the regeneration of nutrients within the euphoric zone. This low f0ratio is the characteristics of the oligo- to mesotrophic area. Contrary to the expected, the ambient nutrient concentration was not an important factor for controlling productivity in this area during the study period. The difference in productivity among stations was mainly due to the variations in phytoplankton biomass in different water masses.

  • PDF

Estimation of Mass Discrimination Factor for a Wide Range of m/z by Argon Artificial Isotope Mixtures and NF3 Gas

  • Min, Deullae;Lee, Jin Bok;Lee, Christopher;Lee, Dong Soo;Kim, Jin Seog
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2403-2409
    • /
    • 2014
  • Absolute isotope ratio is a critical constituent in determination of atomic weight. To measure the absolute isotope ratio using a mass spectrometer, mass discrimination factor, $f_{MD}$, is needed to convert measured isotope ratio to real isotope ratio of gas molecules. If the $f_{MD}$ could be predicted, absolute isotope ratio of a chemical species would be measureable in absence of its enriched isotope pure materials or isotope references. This work employed gravimetrically prepared isotope mixtures of argon (Ar) to obtain $f_{MD}$ at m/z of 40 in the magnetic sector type gas mass spectrometer (gas/MS). Besides, we compare the nitrogen isotope ratio of nitrogen trifluoride ($NF_3$) with that of nitrogen molecule ($N_2$) decomposed from the same $NF_3$ thermally in order to identify the difference of $f_{MD}$ values in extensive m/z region from 28 to 71. Our result shows that $f_{MD}$ at m/z 40 was $-0.044%{\pm}0.017%$ (k = 1) from measurement of Ar artificial isotope mixtures. The $f_{MD}$ difference in the range of m/z from 28 to 71 is observed $-0.12%{\pm}0.14%$ from $NF_3$ and $N_2$. From combination of this work and reported $f_{MD}$ values by another team, IRMM, if $f_{MD}$ of $-0.16%{\pm}0.14%$ is applied to isotope ratio measurement from $N_2$ to $SF_6$, we can determine absolute isotope ratio within relative uncertainty of 0.2 %.

The Effect of Nutritional Balance between Carbon and other Nutrient Sources on the Growth of Sporobolomyces holsaticus (탄소원과 다른 영양원간의 영양균형이 Sporobolomyces holsaticus의 균체생육도에 미치는 영향)

  • Park, Wan-Soo;Koo, Young-Jo;Shin, Dong-Hwa;Min, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.56-61
    • /
    • 1983
  • Direct production of biomass from starch using amylolytic yeast, Sporobolomyces holsaticus FRI Y-5 was studied with varying the ratios between carbon and other nutrient sources in the medium. It was investigated under condition of constant C/P and C/S ratio to influence the initial concentration of starch $(S_o)$ and C/N ratio on its growth which is described as the specific growth rate $({\mu})$, cell yield (Y), the maximum concentration of cell $(X_m)$, and productivity (P). They were very dependent on both $S_o$ and C/N ratio. The form of the relationship between and ${\mu}$ and $S_o$ was observed to be similar to saturation kinetics at C/N = 100 but presented substrate inhibition at other C/N ratios. As $S_o$ was changed from 22.5 to 90 g/l, Y was observed to vary with C/N ratios but seemed to decrease as a wholes. $X_m$ was linearly related to $S_o$ at more than C/N = 50 but at less than C/N = 10 substrate inhibition was presented. P increased suddenly to $S_o$ = 45 g/l and then changed decreasingly at less than C/N = 50, but at more than C/N = 100 it changed increasingly. The effect of C/P ratio and C/S ratio on the yeast growth was also investigated at constant $S_o$ and C/N ratio. ${\mu}$ was dependent on C/P and C/S ratios, but Y, independent on them. But $X_m$ was reliant upon C/P ratio but not upon C/S ratio.

  • PDF

Fouling analysis and biomass distribution on a membrane bioreactor under low ratio COD/N

  • Gasmi, Aicha;Heran, Marc;Hannachi, Ahmed;Grasmick, Alain
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.263-276
    • /
    • 2015
  • This paper deals with the influence of chemical oxygen demand to nitrogen ratio ((COD/N) ratio) on the performance of an membrane bioreactor. We aim at establishing relations between COD/N ratio, organisms' distribution and sludge properties (specific resistance to filtration (SRF) and membrane fouling). It is also essential to define new criteria to characterize the autotrophic microorganisms, as the measurements of apparent removal rates of ammonium seem irrelevant to characterize their specific activity. Two experiments (A and B) have been carried on a 30 L lab scale membrane bioreactor with low COD/N ratio (2.3 and 1.5). The obtained results clearly indicate the role of the COD/N ratio on the biomass distribution and performance of the membrane bioreactor. New specific criteria for characterising the autotrophic microorganisms activity, is also defined as the ratio of maximum ammonium rate to the specific oxygen uptake rate in the endogenous state for autotrophic bacteria which seem to be constant whatever the operating conditions are. They are about 24.5 to 23.8 $gN-NH_4{^+}/gO_2$, for run A and B, respectively. Moreover, the filterability of the biological suspension appear significantly lower, specific resistance to filtration and membrane fouling rate are less than $10^{14}m^{-2}$ and $0.07\;10^{12}m^{-1}.d^{-1}$ respectively, than in conventional MBR confirming the adv < antage of the membrane bioreactor functioning under low COD/N ratio.

Biodegradation Enhancement of The Mixture of Kerosene and Diesel by using Biosurfactant from Pseudomonas aeruginosa F722 (Pseudomonas aeruginosa F722부터 유래된 biosurfactant를 이용한 등.경유 혼합물의 생분해율 향상)

  • ;;;skubo Motoki
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.529-535
    • /
    • 2003
  • We studied degradation effects of hydrophobic substrate such as kerosene and diesel by adding a biosurfactant originated from Pseudomonas aeruginosa F722 and chemical surfactants (Tween 80 and detergent) with aeration. The surface tensions of the biosurfactant, Tween 80 and detergent were 30mN/m, 39mN/m and 31mN/m, respectively. When the concentration of biosurfactant added in C-medium was 0.01 and 0.15%(w/v), the ratios of hydrocarbon degradation were 94.3% and 94.2% respectively. It was 6.2%(w/v) higher than when the concentrations of added biosurfactant were 0.05, 0.1 and 0.2%. The degradation ratios of the chemical surfactants (Tween 80 and detergent) were 94.5% and 93.5% respectively. The effects of the biosurfactant and chemical surfactants were similar on the degradation ratio in mixtures of kerosene and diesel. However, the population of viable p. aeruginosa F722 at the end of the cultivation period was twice as higher in the biosurfactant than that in the chemical surfactant. We also studied the effect of aeration (0.5vvm) on the degradation ratio. The biosurfactant addition experiment was conducted with 0.5vvm air, 35$^{\circ}C$, 150rpm, pH 8.0, 3days, 1.0% (w/v) substrate. When p. aeruginosa F722 and 0.15%(w/v) biosurfactant were added, the degradation ratio of hydrocarbon was 94.8%. Without p. aeruginosa F722, it was 68%. Thus, with aeration, the degradation ratio of hydrocarbon was increased by 26.8%. In addition, the cultivation time was shortened by 1/3. The degradation ratios of hydrocarbon in shaking culture (cultivation time; 3days) and stationary culture (cultivation time; 10days) were 94.8 and 93.7% respectively. Thus, the addition of biosurfactant and aeration enhanced the degradation of hydrocarbon originated kerosene and diesel.

Effects of the V/III ratio on a-plane GaN epitaxial layer on r-plane sapphire grown by HVPE (r-Plane sapphire 위에 HVPE에 의해 성장한 a-plane GaN에피텍셜층의 V/III족 ratio에 따른 특성 변화)

  • Ha, Ju-Hyung;Park, Mi-Seon;Lee, Won-Jae;Choi, Young-Jun;Lee, Hae-Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.89-93
    • /
    • 2014
  • In this study, effects of the V/III ratio on a-plane GaN epitaxial on r-plane grown by HVPE have been investigated. According to increasing of V/III ratio, the value of FWHM of a-plane (11-20) GaN and the value of surface roughness (Ra) were decreased. Growth rate of a-plane GaN epitaxial layer were increased until V/III ratio = 7 as the increasing of V/III ratio, but it was reduced at V/III ratio = 10. At V/III ratio = 10, the FWHM of a-plane (11-20) GaN RC and the surface roughness (Ra) were 829 arcsec and 1.58 nm, respectively, as the lowest value in this study. Also for V/III ratio = 10, cracks under surface or voids were observed the lowest values in images of optical microscope. An M-shaped azimuthal dependence over $360^{\circ}$ angle range was observed for all samples. At V/III ratio = 10, the difference of FWHM of a-plane GaN between $0^{\circ}$ and $90^{\circ}$ was 439 arcsec revealed as the lowest value in the 4 samples.

Piggery Waste Treatment using Partial Nitritation and Anaerobic Ammonium Oxidation (부분질산화와 혐기성 암모늄산화를 이용한 돈사폐수처리)

  • Hwang, In-Su;Min, Kyung-Sok;Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.599-604
    • /
    • 2006
  • Nitrogen removal with the combined SHARON (Single reactor system for high ammonium removal over nitrite)ANAMMOX (Anaerobic ammonium oxidation) process using the effluent of ADEPT (Anaerobic digestion elutriated phased treatment) slurry reactor with very low C/N ratio for piggery waste treatment was investigated. For the preceding SHARON reactor, ammonium nitrogen loading and removal rate were $0.97kg\;NH_4-N/m^3_{reactor}/day$ and $0.68kg\;NH_4-N/m^3_{reactor}/day$ respectively. In steady state, bicarbonate alkalinity consumption for ammonium nitrogen converted to $NO_2-N$ or $NO_3-N$ was 8.4 gram per gram ammonium nitrogen. The successive ANAMMOX reactor was fed with the effluent from SHARON reactor. The loading and removal rate of the soluble nitrogen defined as the sum total of $NH_4-N$, $NO_2-N$ and $NO_3-N$ in ANAMMOX reactor were $1.36kg\;soluble\;N/m^3_{reactor}/day$ and $0.7kg\;soluble\;N/m^3_{reactor}/day$, respectively. The average $NO_2-N/NH_4-N$ removal ratio by ANAMMOX was 2.41. Fluorescence in situ hybridization (FISH) analysis verified that Candidatus Kuenenia stuttgartiensis were dominate, which means that they played an important role of nitrogen removal in ANAMMOX reactor.

Synthesis of $Ni_2Y$ magnetic particles by coprecipitation method (공침법에 의한 $Ni_2Y$ 자성 분말의 합성)

  • 김한근;사공건
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.906-910
    • /
    • 1996
  • Ferroxplana N $i_{2}$Y(B $a_{2}$N $i_{2}$F $e_{12}$ $O_{22}$ ) magnetic particles, which is one of the hexagonal ferrite were synthesized by a coprecipitation method. The coprecipitates were prepared by adding aqueous solution of BaC $I_{2}$ - 2 $H_{2}$O, NiC $I_{2}$ - 6 $H_{2}$O and FeC $I_{3}$ - 6 $H_{2}$O(of which the mole ratio is $Ba^{+2}$ : N $i^{+2}$ : F $e^{3+}$= 1 : 1 : 6) to a mixture of NaOH and N $a_{2}$C $O_{3}$. The shape of Ferroxplana N $i_{2}$Y magnetic particles obtained at 1, 100(.deg. C) was hexagonal plate-like, average particle size and aspect ratio were 2(.mu.m) and 7, respectively.y.

  • PDF

Study for Biological Denitrification of High-Strength Nitrate and Nitrite Industrial Wastewater (고농도 질산 및 아질산성 질소 함유 폐수의 생물학적 탈질에 관한 연구)

  • Lee, Byong Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.446-454
    • /
    • 2005
  • An economic treatment method to remove oxidized nitrogen from wastewater is biological denitrification with organic matters. Several organics can be used, however, methanol is commonly used. When methanol is provided, M:N (Methanol to Nitrogen) ratio is used to define methanol demand for denitrification. In this study, two artificial wastewaters were provided to a biological system to evaluate denitrification performance. Differences of influent total CODcr from effluent soluble CODcr were converted to methanol equivalent and oxidized nitrogen difference between influent and effluent were converted to nitrate equivalent to define M:N ratios. Modes I, II, III, I-1 and IV showed 5.1, 2.7, 3.3, 2.3 and 2.6 of M:N ratios, respectively. Since denitrifying microorganisms had to build a new metabolic system for methanol and influent organics, initial operation mode, Mode I, required more methanol and this resulted in high M:N ratios compared with later operation mode, Mode I-1. Salt in influent did not show inhibitory effects on denitrfication, although this was believed to increase effluent SS and soluble CODcr concentrations in Mode III, I-1 and IV, respectively. The concentrations of effluent soluble $COD_{Mn}$ did not changed much with influent salt.

MRC Performance Comparison between Rectangular QAM and M-PSK over Nakagami-n Fading Channels (나카가미-n 페이딩 채널에서 직사각 QAM과 M-PSK 신호의 최대비 합성 수신 성능 비교)

  • Lim, Jeong-Seok;Park, Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.754-761
    • /
    • 2005
  • We derive and analyze a bit error rate(BER) expression of a Gray coded rectangular QAM(R-QAM) signal with maximal ratio combining diversity(MRC) reception over Nakagami-n(Rician) fading channels. The derived result is provided in terms of the Whittaker function and the confluent hypergeometric function. In addition, by performance comparison with M-PSK, we see the Nakagami-n fading channel characteristics. Because the derived expression is general, it can readily allow numerical e·valuation for various cases of practical interest such as line-of-sight (LOS) or satellite communication channel analysis.