• 제목/요약/키워드: Lyapunov functionals

검색결과 19건 처리시간 0.026초

GLOBAL STABILITY ANALYSIS FOR A CLASS OF COHEN-GROSSBERG NEURAL NETWORK MODELS

  • Guo, Yingxin
    • 대한수학회보
    • /
    • 제49권6호
    • /
    • pp.1193-1198
    • /
    • 2012
  • By constructing suitable Lyapunov functionals and combining with matrix inequality technique, a new simple sufficient condition is presented for the global asymptotic stability of the Cohen-Grossberg neural network models. The condition contains and improves some of the previous results in the earlier references.

시간 종속적인 리아프노프 함수를 이용한 모바일 로봇의 선도-추종 샘플 데이터 제어 (Leader-Following Sampled-Data Control of Wheeled Mobile Robots using Clock Dependent Lyapunov Function)

  • 예동희;한승용;이상문
    • 대한임베디드공학회논문지
    • /
    • 제16권4호
    • /
    • pp.119-127
    • /
    • 2021
  • The aim of this paper is to propose a less conservative stabilization condition for leader-following sampled-data control of wheeled mobile robot (WMR) systems by using a clock-dependent Lyapunov function (CDLF) with looped functionals. In the leader-following WMR system, the state and input of the leader robot are measured by digital devices mounted on the following robot, and they are utilized to construct the sampled-data controller of the following robot. To design the sampled-data controller, a stabilization condition is derived by using the CDLF with looped functionals, and formulated in terms of sum of squares (SOS). The considered Lyapunov function is a polynomial form with respect to the clock related to the transmitted sampling instants. As the degree of the Lyapunov function increases, the stabilization condition becomes less conservative. This ensures that the designed controller is able to stabilize the system with a larger maximum sampling interval. The simulation results are provided to demonstrate the effectiveness of the proposed method.

STABILITY IN FUNCTIONAL DIFFERENCE EQUATIONS WITH APPLICATIONS TO INFINITE DELAY VOLTERRA DIFFERENCE EQUATIONS

  • Raffoul, Youssef N.
    • 대한수학회보
    • /
    • 제55권6호
    • /
    • pp.1921-1930
    • /
    • 2018
  • We consider a functional difference equation and use fixed point theory to obtain necessary and sufficient conditions for the asymptotic stability of its zero solution. At the end of the paper we apply our results to nonlinear Volterra infinite delay difference equations.

An Efficient and Stable Congestion Control Scheme with Neighbor Feedback for Cluster Wireless Sensor Networks

  • Hu, Xi;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4342-4366
    • /
    • 2016
  • Congestion control in Cluster Wireless Sensor Networks (CWSNs) has drawn widespread attention and research interests. The increasing number of nodes and scale of networks cause more complex congestion control and management. Active Queue Management (AQM) is one of the major congestion control approaches in CWSNs, and Random Early Detection (RED) algorithm is commonly used to achieve high utilization in AQM. However, traditional RED algorithm depends exclusively on source-side control, which is insufficient to maintain efficiency and state stability. Specifically, when congestion occurs, deficiency of feedback will hinder the instability of the system. In this paper, we adopt the Additive-Increase Multiplicative-Decrease (AIMD) adjustment scheme and propose an improved RED algorithm by using neighbor feedback and scheduling scheme. The congestion control model is presented, which is a linear system with a non-linear feedback, and modeled by Lur'e type system. In the context of delayed Lur'e dynamical network, we adopt the concept of cluster synchronization and show that the congestion controlled system is able to achieve cluster synchronization. Sufficient conditions are derived by applying Lyapunov-Krasovskii functionals. Numerical examples are investigated to validate the effectiveness of the congestion control algorithm and the stability of the network.

큰 상태변수 시간 지연 부정합조건 불확실성 시스템을 위한 강인한 슬라이딩 모드 제어기 (A Robust Sliding Mode Controller for Unmatched Uncertain Severe Sate Time-Delay Systems)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1894-1899
    • /
    • 2010
  • This note is concerned with a robust sliding mode control(SMC) for a class of unmatched uncertain system with severe commensurate state time delay. The suggested method is extended to the control of severe state time delay systems with unmatched uncertainties except the matched input matrix uncertainty. A transformed sliding surface is proposed and a stabilizing control input is suggested. The closed loop stability together with the existence condition of the sliding mode on the proposed sliding surface is investigated through one Lemma and two Theorems by using the Lyapunov direct method with the concept of the control Lyapunov function instead of complex Lyapunov-Kravoskii functionals. Through an illustrative example and simulation study, the usefulness of the main results is verified.

시간지연시스템의 안정성에 관한 연구동향 (Stability on Time Delay Systems: A Survey)

  • 박부견;이원일;이석영
    • 제어로봇시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.289-297
    • /
    • 2014
  • This article surveys the control theoretic study on time delay systems. Since time delay systems are infinite dimensional, there are not analytic but numerical solutions on almost analysis and synthesis problems, which implies that there are a tremendous number of approximated solutions. To show how to find such solutions, several results are summarized in terms of two different axes: 1) theoretic tools like integral inequality associated with the derivative of delay terms, Jensen inequality, lower bound lemma for reciprocal convexity, and Wirtinger-based inequality and 2) various candidates for Laypunov-Krasovskii functionals.

STABILITY FOR A VISCOELASTIC PLATE EQUATION WITH p-LAPLACIAN

  • Park, Sun Hye
    • 대한수학회보
    • /
    • 제52권3호
    • /
    • pp.907-914
    • /
    • 2015
  • In this paper, we consider a viscoelastic plate equation with p-Laplacian $u^{{\prime}{\prime}}+{\Delta}^2u-div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)+{\sigma}(t){\int}_{0}^{t}g(t-s){\Delta}u(s)ds-{\Delta}u^{\prime}=0$. By introducing suitable energy and Lyapunov functionals, we establish a general decay estimate for the energy, which depends on the behavior of both ${\sigma}$ and g.

시간 지연을 포함한 네트워크 시스템의 안정도 분석 (Stability Analysis of Network Systems with Time delay)

  • 김재만;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1674-1675
    • /
    • 2007
  • This paper presents a stability analysis of network systems with time delay. Time delay problem frequently occurs in network systems. Since it makes network systems unstable and unpredictable, an optimal controller is necessary to network systems. We prove the asymptotical stability of time delayed network systems using LMI optimization method and appropriate Lyapunov-Krasovskii functionals. Simulations show the effectiveness of the method.

  • PDF

포화 구동기를 갖는 시간 시연 선형 시스템의 H 제어 (H Control of Time-Delayed Linear Systems with Saturating Actuators)

  • 송용희;김진훈
    • 전기학회논문지
    • /
    • 제59권8호
    • /
    • pp.1464-1470
    • /
    • 2010
  • In this paper, we consider the $H_{\infty}$ control of time-delayed linear systems with saturating actuators. The considered time-delay is a time-varying one having bounds on magnitude and time-derivative, and the control permits the predetermined degree of saturation. Based on two modified Lyapunov-Krasovskii(L-K) functionals, we derive a $H_{\infty}$ control in the form of linear matrix inequalities(LMI) having three non-convex design parameters. The result is dependent on the characteristics of time-delay, predetermined degree of saturation level, and bound of disturbance. Finally, we give a comparative example to show the effectiveness and usefulness of our result.