• 제목/요약/키워드: Lyapunov′s stability

검색결과 192건 처리시간 0.028초

리아프노브 분석법 기반 비선형 적응제어 개요 및 연구동향 조사 (Nonlinear Adaptive Control based on Lyapunov Analysis: Overview and Survey)

  • 박진배;이재영
    • 제어로봇시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.261-269
    • /
    • 2014
  • This paper provides an overview of the basics and recent studies of Lyapunov-based nonlinear adaptive control, the aim of which is to improve or maintain the performance and stability of the closed-loop system by cancelling out the presumable uncertainties in the nonlinear system dynamics. The design principles are essentially based on Lyapunov's direct method. In this survey, we provide a comprehensive overview of Lyapunov-based nonlinear adaptive control techniques with simplified effective design examples, which are to be elaborated as related recent results are gradually shown. The scope of the survey contains research on singularity problems in adaptive control, the techniques to deal with linearly and nonlinearly parameterized uncertainties, robust neuro-adaptive control, and adaptive control methodologies combined with various nonlinear control techniques such as sliding-mode control, back-stepping, dynamic surface control, and optimal/$H_{\infty}$ control.

A DESIGN METHOD OF LYAPUNOV-STABLE MMG FUZZY CONTROLLER

  • Hara, Fumio;Yamamoto, Kazuomi
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.873-876
    • /
    • 1993
  • A fuzzy controller designed by mini-max-gravity(MMG) method is essentially nonlinear with respect to the controller's input and output relationship, and stability analysis is thus needed to construct a stable control system. This paper deals with a design method of a position-type MMG fuzzy controller stable in a sense of Lyapunov when considered is a single-input-single-output linear, stable plant. We first introduce a method to construct a Laypunov function by using an eigen-value of A matrix of the linear, stable plant dynamics and then we derive an asymtotic stability condition in terms of scale factors for fuzzy state variables and controller gain. The stability condition is found reasonably practical through comparing the theoretical stability region with that obtained from simulations.

  • PDF

H-infinity Discrete Time Fuzzy Controller Design Based on Bilinear Matrix Inequality

  • Chen M.;Feng G.;Zhou S.S.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.127-137
    • /
    • 2006
  • This paper presents an $H_{\infty}$ controller synthesis method for discrete time fuzzy dynamic systems based on a piecewise smooth Lyapunov function. The basic idea of the proposed approach is to construct controllers for the fuzzy dynamic systems in such a way that a Piecewise smooth Lyapunov function can be used to establish the global stability with $H_{\infty}$ performance of the resulting closed loop fuzzy control systems. It is shown that the control laws can be obtained by solving a set of Bilinear Matrix Inequalities (BMIs). An example is given to illustrate the application of the proposed method.

THE STABILIZATION OF PROGRAM MOTIONS OF CONTROLLED NONLINEAR MECHANICAL SYSTEMS

  • Bezglasnyi, Sergey
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.251-266
    • /
    • 2004
  • We consider a controlled nonlinear mechanical system described by the Lagrange equations. We determine the control forces $Q_1$ and the restrictions for the perturbations $Q_2$ acting on the mechanical system which allow to guarantee the asymptotic stability of the program motion of the system. We solve the problem of stabilization by the direct Lyapunov's method and the method of limiting functions and systems. In this case we can use the Lyapunov's functions having nonpositive derivatives. The following examples are considered: stabilization of program motions of mathematical pendulum with moving point of suspension and stabilization of program motions of rigid body with fixed point.

ON GLOBAL EXPONENTIAL STABILITY FOR CELLULAR NEURAL NETWORKS WITH TIME-VARYING DELAYS

  • Kwon, O.M.;Park, Ju-H.;Lee, S.M.
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.961-972
    • /
    • 2008
  • In this paper, we consider the global exponential stability of cellular neural networks with time-varying delays. Based on the Lyapunov function method and convex optimization approach, a novel delay-dependent criterion of the system is derived in terms of LMI (linear matrix inequality). In order to solve effectively the LMI convex optimization problem, the interior point algorithm is utilized in this work. Two numerical examples are given to show the effectiveness of our results.

  • PDF

ANALYSIS OF A NONAUTONOMOUS PREDATOR-PREY MODEL INCORPORATING A PREY REFUGE AND TIME DELAY

  • Samanta, G.P.;Garain, D.N.
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.955-967
    • /
    • 2011
  • In this paper we have considered a nonautonomous predator-prey model with discrete time delay due to gestation, in which there are two prey habitats linked by isotropic migration. One prey habitat contains a predator and the other (a refuge) does not. Here, we have established some sufficient conditions on the permanence of the system by using in-equality analytical technique. By Lyapunov functional method, we have also obtained some sufficient conditions for global asymptotic stability of this model. We have observed that the per capita migration rate among two prey habitats and the time delay has no effect on the permanence of the system but it has an effect on the global asymptotic stability of this model. The aim of the analysis of this model is to identify the parameters of interest for further study, with a view to informing and assisting policy-maker in targeting prevention and treatment resources for maximum effectiveness.

GLOBAL ANALYSIS FOR A DELAY-DISTRIBUTED VIRAL INFECTION MODEL WITH ANTIBODIES AND GENERAL NONLINEAR INCIDENCE RATE

  • Elaiw, A.M.;Alshamrani, N.H.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권4호
    • /
    • pp.317-335
    • /
    • 2014
  • In this work, we investigate the global stability analysis of a viral infection model with antibody immune response. The incidence rate is given by a general function of the populations of the uninfected target cells, infected cells and free viruses. The model has been incorporated with two types of intracellular distributed time delays to describe the time required for viral contacting an uninfected cell and releasing new infectious viruses. We have established a set of conditions on the general incidence rate function and determined two threshold parameters $R_0$ (the basic infection reproduction number) and $R_1$ (the antibody immune response activation number) which are sufficient to determine the global dynamics of the model. The global asymptotic stability of the equilibria of the model has been proven by using Lyapunov theory and applying LaSalle's invariance principle.

컨테이너 크레인의 되먹임 선형화제어 (Feedback Linearization Control of Container Cranes)

  • 박한;좌동경;홍금식
    • 한국해양공학회지
    • /
    • 제19권5호
    • /
    • pp.58-64
    • /
    • 2005
  • In this paper, a feedback linearizing anti-sway control law, using a 2-D model for container cranes, is investigated. The equations of motion are first derived from Lagrange's equation. Then, by substituting the sway dynamics into the trolley dynamics, a reduction of variables from three (trolley, hoist, sway) to two (trolley, hoist) is pursued. The anti-sway control law is designed based on the Lyapunov stability theorem. The proposed control law guarantees the uniform asymptotic stability of the closed-loop system. The simulation results of the derived control law, using MATLAB/Simulink, are compared with those of the sliding mode control law, noted in previous literature. Also, experimental results using a 3-D pilot crane are provided.

보행 시 여성 노인의 하지 관절 근력과 국부 동적 안정성과의 관계 (Relationship between Strengths of the Lower Extremity's Joints and Their Local Dynamic Stability during Walking in Elderly Women)

  • Ryu, Jiseon
    • 한국운동역학회지
    • /
    • 제31권1호
    • /
    • pp.30-36
    • /
    • 2021
  • Objective: The objective of the present study was to analyze the relationship between strength of the lower extremity's joints and their local dynamic stability (LDS) of gait in elderly women. Method: Forty-five elderly women participated in this study. Average age, height, mass, and preference walking speed were 73.5±3.7 years, 153.8±4.8 cm, 56.7±6.4 kg, and 1.2±0.1 m/s, respectively. They were tested torque peak of the knee and ankle joints with a Human Norm and while they were walking on a treadmill at their preference speed for a long while, kinematic data were obtained using six 3-D motion capture cameras. LDS of the lower extremity's joints were calculated in maximum Lyapunov Exponent (LyE). Correlation coefficients between torque of the joints and LyE were obtained using Spearman rank. Level of significance was set at p<.05. Results: Knee flexion torque and its LDS was negatively associated with adduction-abduction and flexion-extension movement (p<.05). In addition, ratio of the knee flexion torque to extension and LDS was negatively related to internal-external rotation. Conclusion: In conclusion, knee flexion strength should preferentially be strengthened to increase LDS of the lower extremity's joints for preventing from small perturbations during walking in elderly women.

Using Largest Lyapunov Exponent to Confirm the Intrinsic Stability of Boiling Water Reactors

  • Gavilan-Moreno, Carlos J.;Espinosa-Paredes, Gilberto
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.434-447
    • /
    • 2016
  • The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.