• Title/Summary/Keyword: Lower limb kinematics

Search Result 41, Processing Time 0.031 seconds

Effect of Wearing Ankle Weights on Underwater Treadmill Walking

  • Park, Que Tae;Kim, Suk Bum;O'Sullivan, David
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.105-112
    • /
    • 2019
  • Objective: The main purpose of this study was to investigate the effects of wearing an ankle weight belt while performing gait in water by focusing on the effect of using ankle weights have on the gait kinematics and the muscle activities for developing optimum training strategies. Method: A total of 10 healthy male university students were recruited for the study. Each participant was instructed to perform 3 gait conditions; normal walking over ground, walking in water chest height, and walking in water chest height while using ankle weights. All walking conditions were set at control speed of $4km/h{\pm}0.05km/h$. The depth of the swimming pool was at 1.3 m, approximately chest height. The motion capture data was recorded using 6 digital cameras and the EMG was recorded using waterproof Mini Wave. From the motion capture data, the following variables were calculated for analysis; double and single support phase (s), swing phase (s), step length (%height), step rate (m/s), ankle, knee, and hip joint angles ($^{\circ}$). From the electromyography the %RVC of the lower limb muscles medial gastrocnemius, rectus femoris, erector spinae, semitendinosus, tibialis anterior, vastus lateralis oblique was calculated. Results: The results show significant differences between the gait time, and step length between the right and left leg. Additionally, the joint angular velocities and gait velocity were significantly affected by the water resistance. As expected, the use of the ankle weights increased all of the lower leg maximum muscle activities except for the lower back muscle. Conclusion: In conclusion, the ankle weights can be shown to stimulate more muscle activity during walking in chest height water and therefore, may be useful for rehabilitation purposes.

The Kinematic Analysis of the Lower Extremity Joint According to the Changes in Height of Box during Step Aerobics (스텝 에어로빅에서 박스 높이 변화에 따른 하지관절의 운동학적 분석)

  • Kim, Kyu-Soo;So, Jae-Moo;Kim, Yun-Ji;Yeo, Houng-Chul
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • This study researched into the left-right inclination of the rear foot at the lower limb joints, knee joint angle, angular velocity of the knee joint, angular acceleration and the max. Based on the analysis of kinematics according to the changes in the height of step box (6, 8, 10 inches) during step aerobics of female college students majoring in physical education. The findings of this study are as follows: Then angle of the knee joint decreased as the height of the step box increased the min. Angle was measured right before the right foot was on the step box, and the angle tended to decrease as the step box get heightened. The left-right inclination of the rearfoot angle according to the height of step box increased as the height increased. In the 'pull-up' stage during which the weight was loaded on the right foot the angle increased, while in the right foot stepping stage during which the right foot was on the ground, the left-right inclination of the rearfoot angle increased as the height of the step box increased. The angular velocity of the knee joint according to the height of step box started increasing when the right foot initially stepped on the step box and during the initial stepping section, the angular velocity decreased as the height of step box increased. The changes in angular acceleration of the knee joint according to the height of step box increased as the height of step box increased.

The Effect of Elastic Therapeutic Taping on Lower Limb Kinematics during a Cross Cutting Movement from Landing in Subjects with Chronic Ankle Instability (탄력 테이핑이 만성 발목 불안정 환자의 착지 후 방향 전환 시 하지 관절 움직임에 미치는 영향)

  • Jo, Tae-Seong;Kim, Tack-Hoon;Choi, Houng-Sik;Roh, Jung-Suk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • PURPOSE: This study investigated the effect that an elastic therapeutic taping treatment given to patients with chronic ankle instability had on the vertical ground reaction force, center of pressure, and range of motion in the ankle, knee and hip joints, during a Cross-cutting movement from landing. METHODS: This study analyzed 12 able-bodied adults and 12 patients with chronic ankle instability classified by using the Cumberland tool in the motion analysis laboratory, Hanseo University. The experiment was conducted under two conditions elastic taping and no treatment. In order to analyze the difference between the groups. An independent t-test was performed at p>.01. RESULTS: Plying an elastic therapeutic taping to the patients with chronic ankle instability significantly decreased the range of joint motion in the inversion of the ankle joint, the flexion of the knee joint, and the flexion and internal rotation of the hip joint during a cross-cutting movement from landing in comparison with the able-bodied adults p<.01. This restriction in the range of motion decreased the center-of-pressure trajectory length of patients with chronic ankle instability p>.01. CONCLUSION: An elastic therapeutic taping treatment given to patients with chronic ankle instability causes ankle stability to increase during a cross-cutting movement from landing.

The Biomechancial Effects of an Interspinous Spacer Implant on 3-D Motions for the Treatment of Lumbar Spinal Stenosis (요추부 척추관 협착증 치료를 위한 극돌기간 삽입술의 3차원 분석을 통한 생체역학적 효과 분석)

  • 이희성;신규철;문수정;정태곤;이권용;이성재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1207-1210
    • /
    • 2004
  • As many humans age, degenerative lumbar spinal stenosis (DLSS) becomes a major cause of lower limb discomfort and disability. By surgical treatment method of DLSS, the existing surgical treatment methods using internal fixation have showed degeneration changes of an adjacent vertebrae and loss of lumbar spine lordosis-kyphosis due to eliminating a motion. For solving the problems of internal fixation, a novel interspinous spacer has been developed to treat DLSS by surgical treatment method. In this study, we evaluated the biomechanical effects of the interspinous spacer on the kinematics of the porcine lumbar spine before and after insertion of the implant. For this purpose, a device that is capable of measuring 3-D motions were built based on direct linear transformation (DLT) algorithm written with MATLAB program. Results showed that in extension, a change of the mean angle between the intact and the implanted specimens at L4-L5 was 1.87 degree difference and the implant reduced the extension range of motion of the L4-L5 (p&lt;0.05). But the range of motion in flexion, axial rotation and lateral bending at the adjacent segments was not statistically affected by the implant. In conclusion, we thought that interspinous spacer may have remedical value for DLSS by flexing human lumbar spine.

  • PDF

The Relationship Between the Range of Hip Rotation and the Quadriceps Angle in Subjects With and Without Flat Foot

  • Lee, Keun-hyo;Chon, Seung-chul
    • Physical Therapy Korea
    • /
    • v.25 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • Background: Alignment of the lower limb is an important factor, influencing balance and gait in kinematics and kinetics, in patients with and without a flat arched foot. Flat arched foot are associated with the range of motion (ROM) of the hip and alignments of the knee joints, is strongly influenced. Objects: The purpose of this research was to investigate the relationship between hip joint ROM and quadriceps angle (Q-angle), by dividing them into two groups according to the presence or absence of flat feet, using a navicular drop test (NDT) and resting calcaneal stance position (RCSP). Methods: Forty elderly patients were allocated to the experimental group (flat foot group, n1=20) or the control group (non-flat group, n2=20). Universal and digital goniometer, tractograph and tape measure were used to determine the related changes in the hip ROM, Q-angle, NDT and RCSP. Results: Data were analyzed using the Pearson correlation coefficients. Active internal ROM of the hip joint (right, r=.803, p<.001), (left, r=.951, p<.001) were highly correlated with NDT, and also, was moderately correlated with Q-angle (right, r=.562, p=.019), (left, r=.757, p<.001). Passive internal ROM of the hip joint (right, r=.742, p=.001), (left, r=.922, p<.001) were highly correlated with NDT, and also, was moderately correlated with RCSP (right, r=-.530, p=.029) and with Q-angle (right, r=.710, p=.001), (left, r=.698, p=.002) in the flat foot group. However, no strong correlation among the hip ROM, NDT, RCSP and Q-angle were found in the non-flat foot group. Conclusion: This research may provide evidence of the correlations between hip internal ROM and flat foot.

Development of a Biomechanical Motion System for the Rehabilitation of Various Joints (다 관절 재활운동을 위한 생체역학적 운동구현 시스템 개발)

  • Lee Y. S.;Baek C. S.;Jang J. H.;Sim H. J.;Han C. S.;Han J. S.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.511-517
    • /
    • 2004
  • The existing rehabilitation systems were developed to exercise specific joints only. Therefore rehabilitating the various joints of human, various kinds of devices are need. To overcome these defects, this paper proposed the CMRS, an integrated system that performs various rehabilitation exercises. The characteristics of motion and the positions between human body and the system were investigated with the kinematics analysis of upper and lower limb of human body. We presented a proper mechanism to develop a rehabilitation device on the base of the study and studied the relative positions between head part and human joints. Through the simulations, the possibility of rehabilitation system was verified. And the base frame was also developed for convenient and stable position control. Finally, the CMRS was developed as an 8 degree of freedom mechanism. It is expected that the CMRS will be applied to the rehabilitations of various joints.

Kinetic Analysis of Foot Balance and Gait Patterns in Patients with Adult Spinal Disease (성인 척추질환자의 발균형 및 보행형태에 대한 운동역학적 분석)

  • Park, Jae Soung;Lee, Joong Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 2019
  • Objective: The aim of this study was to provide kinematic data on the characteristics of spinal disease patients by comparing and analyzing kinematic variables related to foot balance and gait pattern of spinal disease. Method: The subjects of the study included 40 adult men and 60 adult women who visited the hospital in Busan. Patients who were diagnosed with spinal disease by a physician through X-ray examination were selected as subjects for the diagnosis of vertebral disc herniation, spinal stenosis, spinal disease diagnosed with spinal disease and the general public. Left and right foot pressure and contact area were checked by Gaitview pro meter. X-ray photographs were taken with a Zen-2090 mobile fluoroscopy under physicians' direct participation. One-way ANOVA was performed to compare the differences between the kinematic variables and post-hoc was performed by the Duncan method. Results: The difference in contact area between the left foot and the right foot was $115.30{\pm}14.15cm^2$ in the left side and $124.25{\pm}13.65cm^2$ in the left side in the spinal disease patients. The difference in pressure between the left and right side of the spinal disease patients was wider than that of the general people. Especially, the right side of the spinal disease patients showed a larger area of left foot contact than the general population. Conclusion: Spinal disease patients have wider contact area of the left foot than those of the general population. In the case of right spinal disease, the left foot support area is widened due to pain. In the gait, women showed slightly more posterior body center than men, and the upper body muscle imbalance and immobilization due to the spinal disease caused imbalance of the muscles moving to the lower limb, It was analyzed to inhibit movement.

Effects of Rehabilitation Duration on Lower Limb Joints Biomechanics dur ing Drop Landing in Athletes with Functional Ankle Instability (기능적 발목 불안정성 선수들의 드롭랜딩 시 재활 기간이 하지 관절의 운동역학적 특성에 미치는 영향)

  • Cho, Joon-Haeng;Kim, Kyoung-Hun;Lee, Hae-Dong;Lee, Sung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.395-406
    • /
    • 2010
  • The purpose of this study was to analyze the changes in kinematic and kinetic parameters of lower extremity joint according to rehabilitation period. Fourteen collegiate male athletes(age: $22.1{\pm}1.35$ years, height: $182.46{\pm}9.45cm$, weight: $88.63{\pm}9.25kg$) and fourteen collegiate athletes on functional ankle instability(age: $21.5{\pm}1.35$ years, height: $184.45{\pm}9.42cm$, weight: $92.85{\pm}10.85kg$) with the right leg as dominant were chosen. The subjects performed drop landing. The date were collected by using VICON with 8 camera to analyze kinematic variables and force platform to analyze kinetic variables. There are two approaches of this study, one is to compare between groups, the other is to find changes of lower extremity joint after rehabilitation. In comparison to the control group, FAI group showed more increased PF & Inversion at IC and decreased full ROM when drop landing. Regarding the peak force and loading rate, it resulted in higher PVGRF and loading. FAI group used more increased knee and hip ROM because of decreased ankle ROM to absorb the shock. And it used sagittal movement to stabilize. In terms of rehabilitation period, FAI group showed that landing patterns were changed and it increased total ankle excursion and used all lower extremity joint close to normal ankle. Regarding the peak force and loading rate, FAI group decreased PVGRF and loading rate. and also showed shock absorption using increased ankle movement. And COP variable showed that proprioception training increased stability during 8 weeks. The results of this study suggest that 8 weeks rehabilitation period is worthwhile to be considered as a way to improve neuromuscular control and to prevent sports injuries.

Biomechanical and Physiological Comparative Analysis of the Single-Radius Knee Arthroplasty Systems and Multi-Radius Knee Arthroplasty Systems (무릎인공관절 단축범위(Single-Radius) 수술자와 다축범위(Multi-Radius) 수술자의 운동역 학적 및 운동생리학적 비교분석)

  • Jin, Young-Wan;Kwak, Yi-Sub
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1532-1537
    • /
    • 2008
  • The purpose of this study was to investigate the effect of different arthroplasty designs on knee kinematic and lower limb muscular activation for up-stair and down-stair movement. 3-D video analysis of whole body and joint kinematics and EMG analysis of quadriceps and hamstrings were conducted. One-way ANOVAs were used for statistical analyses (p=0.05). The single-radius group exhibited more arthroplasty limb quadriceps EMG and hamstring coactivation EMG than the multi-radius group. Single-radius demonstrated more abduction angular displacement and reached peak abduction earlier than the multi-radius arthroplasty limb. The single- radius the percent body fat showed similar values in the Elderly, Single and Multi-radius group among the periods, however Control group was Lowered among the periods. Single-radius group limb also increased the quadriceps muscle activation level to produce more knee extension moment to compensate for the short quadriceps moment arm. Resting metabolic rate was significantly increased in control group in the period of LI. Energy expenditure was extremely increased in all groups except control group among the periods. We can say this is the exercise effects.

The Immediately Effect of Narrow Squats on the Knee Joint Biomechanics During a Gait and Distance Between the Knees of Person With Genu-varum (내로우 스쿼트 운동이 내반슬 성인의 무릎 사이 거리와 보행 시 무릎 관절의 생체역학에 미치는 즉각적인 영향)

  • Han, Seok-kyu;Kim, Tack-hoon;Rho, Jung-suk;Choi, Houng-sik;Lee, Jun-young
    • Physical Therapy Korea
    • /
    • v.25 no.3
    • /
    • pp.19-26
    • /
    • 2018
  • Background: Genu varum is also known as bow leg. It is a deformity wherein there is lateral bowing of the legs at the knee. it does give rise to pain, and persistent bowing can often give rise to discomfort in knees, hips and ankles. Objects: This study investigated the effect of narrow squats on the knee joint during a gait and distance between the knees of person with genu varum. Methods: This study analyzed 23 patient with genu varum that grade III, 12 narrow squat group and 11 genenal squat group in motion analysis laboratory. The subjects of experiment took gait before and after intervention, the range of joint motion, moment of knee joint adduction, power, distance of the knees were measured. And in order to make an analysis between groups, an paiered t-test and independent t-test was carried out. For statistical significance testing, it was decided that significance level ${\alpha}$ be .05. Results: It was shown that the group of narrow squat exercise significantly decreased in distance of knees (p<.05),In moment of adduction of knee joint, it was shown to significantly decrease in two groups (p<.05), was significantly decreased in adduction, abduction, and rotation (p<.05). In relation of peak-knee adduction moment and valgus angle, there was significant decrease in narrow squat group (p<.05). Conclusion: When the above result of study were examined, a narrow squat exercise given to the genu varum patients significantly decreased the distance between the knees, range of knee adduction and abduction, knee adduction moment, knee power. And stability gains through the decrease of excursion of knee medial part be effective for the correction of genu varum deformation.