• 제목/요약/키워드: Low-temperature paste

검색결과 157건 처리시간 0.023초

Soldering characteristics of Ag-Pd electrodes in relationship to differing particle size of LTCC substrate (LTCC 기판의 Particle Size 에 따른 Ag-Pd 전극의 Soldering 특성 변화)

  • 조현민;유명재;박종철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.130-133
    • /
    • 2002
  • Solder leaching resistance of the metal electrode is an important factor with regard to adhesion properties of ceramic substrate. In the Low Temperature Co-fired Ceramics (LTCC), Ag-Pd or Ag-Pt pastes are used instead of pure Ag paste to prevent leaching. Solder leaching behavior of the Ag-Pd paste in relation to LTCC raw material powder size was investigated. First fabrication of LTCC green tape with different particle size was done. LTCC substrates with Ag-Pd electrode were prepared using conventional multilayer ceramic process. Dipping test was performed to test solder leaching behavior of the electrode. Ag-Pd electrode on LTCC substrate with smaller particle size achieved higher solder leaching resistance.

  • PDF

Optimization of Material and Process for Fine Pitch LVSoP Technology

  • Eom, Yong-Sung;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong;Choi, Heung-Soap
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.625-631
    • /
    • 2013
  • For the formation of solder bumps with a fine pitch of 130 ${\mu}m$ on a printed circuit board substrate, low-volume solder on pad (LVSoP) technology using a maskless method is developed for SAC305 solder with a high melting temperature of $220^{\circ}C$. The solder bump maker (SBM) paste and its process are quantitatively optimized to obtain a uniform solder bump height, which is almost equal to the height of the solder resist. For an understanding of chemorheological phenomena of SBM paste, differential scanning calorimetry, viscosity measurement, and physical flowing of SBM paste are precisely characterized and observed during LVSoP processing. The average height of the solder bumps and their maximum and minimum values are 14.7 ${\mu}m$, 18.3 ${\mu}m$, and 12.0 ${\mu}m$, respectively. It is expected that maskless LVSoP technology can be effectively used for a fine-pitch interconnection of a Cu pillar in the semiconductor packaging field.

Effects of $Al_2O_3$ Based Paste Formulation for Constrained Sintering in LTCC (Constrained Sintering을 위한 LTCC용 $Al_2O_3$ Paste 조성에 대한 영향)

  • Lee, Sang-Myoung;Yoo, Myong-Jae;Kim, Jun-Yong;Park, Sung-Dae;Park, Jong-Chul;Nahm, Sahn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.267-268
    • /
    • 2007
  • 기존의 Free Sintering 방법을 사용하는 LTCC(Low Temperature Cofiring Ceramics)는 수축률이 일정하지 않아서 설계 치수와 동일하게 제작하기 어려운 단점을 가지고 있다. 이에 따라서 정밀한 전자부품을 제작하기 위한 방안으로 X-Y면 방향에서의 변형을 거의 zero로 제어하는 Constrained Sintering(CS) 기술이 요구되고 있다. 본 연구에서는 LTCC 기판이 소성되는 동안에 변형을 억제하기 위하여 소성온도가 LTCC 기판 보다 높은 $Al_2O_3$ 분말과 유기물을 혼합하여 페이스트를 제작한 후에 스크린 프린팅 방법을 이용하여 도포 후에 Z축 방향으로 일축가압을 하면서 소성하여 수축률을 제어 하였다. 또한 바인더와 $Al_2O_3$ 분말의 함량에 대한 최적 조성의 $Al_2O_3$ 페이스트를 제작하여 0.5%로 수축률을 가지는 균일한 LTCC 기판을 구현 할 수 있었다.

  • PDF

Gravure Offset Printed on Fine Pattern by Developing Electrodes for the Ag Paste (Gravure Offset 인쇄에 의한 미세 전극용 Ag Paste 개발)

  • Lee, Sang-Yoon;Jang, Ah-Ram;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • 제30권3호
    • /
    • pp.45-56
    • /
    • 2012
  • Printing technology is accepted by appropriate technology that smart phones, tablet PC, display(LCD, OLED, etc.) precision recently in the electronics industry, the market grows, this process in the ongoing efforts to improve competitiveness through the development of innovative technologies. So printed electronics appeared by new concept. This technology development is applied on electronic components and circuits for the simplification of the production process and reduce processing costs. Low-temperature process making possible for widening, slimmer, lighter, and more flexible, plastic substrates, such as(flexible) easily by forming a thin film on a substrate has been studied. In the past, the formation of the electrode used a screen printing method. But the screen printing method is formation of fine patterns, high-speed printing, mass production is difficult. The roll-to-roll printing method as an alternative to screen printing to produce electronic devices by printing techniques that were used traditionally in the latest technology and processing techniques applied to precision control are very economical to implement fine-line printing equipment has been evaluated as. In order to function as electronic devices, especially the dozens of existing micro-level of non-dot print fine line printing is required, the line should not break at all, because according to the specifications required to fit the ink transfer conditions should be established. In this study of roll-to-roll printing conductive paste suitable for gravure offset printing by developing Ag paste for forming fine patterns to study the basic physical properties with the aim of this study were to.

Thermal Behaviors of Ag Conductive Thick Film with Firing Temperature for Plasma Display Panel (PDP용 Ag 전도성 후막의 열적거동)

  • Hwang, Seong-Jin;Lee, Sang-Wook;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.278-278
    • /
    • 2007
  • Ag conductive thick film has been used in bus and address electrodes of PDP (Plasma display panel). In PDP fabrication, the firing temperature of electrode is normally $550{\sim}580^{\circ}C$. For the application of PDP industry, we investigated an Ag conductive thick film with firing temperature. Low melting glass frit was used in the conductive thick film. The thermal properties of Ag and frit were determined by a hot stage microscopy. Based on the our results, we suggest that the Ag conductive thick film should be considered of the firing temperature which is correlated to the shrinkage, conductivity, and shape of thick film.

  • PDF

Synthesis and Characterization of Cordierite Glass-Ceramics for Low Firing Temperature Substrate; (IV) Metallizing by Using Cu Powder Coated by Sol-Gel Method (저온소결 세라믹기판용 Cordierite계 결정화유리의 합성 및 특성조사에 관한 연구;(IV) Sol-Gel법으로 코팅한 Cu분말을 이용한 Metallizing)

  • 김병호;문성훈;이근헌;임대순
    • Journal of the Korean Ceramic Society
    • /
    • 제31권4호
    • /
    • pp.427-435
    • /
    • 1994
  • Cu-metallized low firing temperature substrates were synthesized by cofiring green sheet of cordierite-based glass with Cu. By Sol-Gel method, Cu powder was coated with borosilicate gel which should act as a glass frit in Cu paste during cofiring. Theoretical weight ratios of Glass/Cu were controlled to be 2.5, 5, 10 and 15% by varying alkoxide concentrations. Average particle size of coated Cu was 0.629~0.674 ${\mu}{\textrm}{m}$ in comparison to that of as-received Cu(0.596 ${\mu}{\textrm}{m}$), which increased with alkoxide concentration but did not increase above certain concentration. The weight ratios of coated layer were 2.11~5.37%. The properties of Cu-metallized low firing temperature substrate, cofired at 90$0^{\circ}C$ for 1h under H2/N2 atmosphere, were as follows; sheet resistance was 13~43 m{{{{ OMEGA }}/$\square$, adhesion strength was 1.0~2.1 kgf/$\textrm{mm}^2$. From the observations of SEM photographs, the gel coated on Cu performed excellently as a glass frit.

  • PDF

GTAW of Titanium Using Flux Cored Wire (플럭스 코어드 와이어를 이용한 티타늄의 GTAW)

  • ;Stephen Liu
    • Proceedings of the KWS Conference
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.182-184
    • /
    • 2004
  • GTAW of titanium using flux cored wire was exploited. Flux cored wire with MgF$_2$ resulted in 60% deeper penetration than conventional active GTAW which applys fluxes in the form of paste. Emission spectroscopy of the arc with MgF$_2$ showed Ti II peak, indicating higher temperature arc. Elux cored wire formed weld metal with reasonably low oxygen content.

  • PDF

Purification and Characterization of a Fibrinolytic Enzyme form Bacillus sp. KDO-13 Isolated from Soybean Paste

  • Lee, Si-Kyung;Bae, Dong-Ho;Kwon, Tae-Jong;Lee, Soo-Bok;Lee, Hyung-Hoan;Park, Jong-Hyun;Heo, Seok;Johnson, Michael-G.
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권5호
    • /
    • pp.845-852
    • /
    • 2001
  • A microorganism producing fibrinolytic enzyme was isolated from Korean traditional soybean paste and identified as Bacillus sp. KDO-13. The fibrinolytic enzyme was purified to homogeneity by ammonium sulfate fractionation, ion-exchange chromatography on DEAE-celluose, and gel chromatography on Sephadex G-100 of the culture supernatant of Bacillus sp. KDO-13. The molecular weight of the purified enzyme was estimated to be 44,000 by SDS-PAGE. The optimum pH and temperature for the enzyme activity were pH 8.0 and $50{\circ}C$, respectively. The enzyme activity was relatively stable at pH 7.0-9.0 and temperature below $50{\circ}C$. the activity of the enzyme was inhibited by $AI^{3+}$ and $Hg^{2+}$, but activated by $Co^{2+}$\;and\;Ni^{2+}. In addition, the enzyme activity was potently inhibited by EDTA and 0-phenanthroline. The purified enzyme could completely hydrolyze a fibrin substrate within 6 h in vitro, and had a low $K_m$ value for fibrin hydrolysis. It was concluded that the purified enzyme was a metalloprotease with relatively high specificity for fibrinolysis, and thus, could be applied as an effective thrombolytic agent.

  • PDF

A Study on the Optimization of CP Based Low-temperature Tabbing Process for Fabrication of Thin c-Si Solar Cell Module (박형 태양전지모듈 제작을 위한 저온 CP 공정 최적화에 관한 연구)

  • Jin, Ga-Eon;Song, Hyung-Jun;Go, Seok-Whan;Ju, Young-Chul;Song, Hee-eun;Chang, Hyo-Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • 제37권2호
    • /
    • pp.77-85
    • /
    • 2017
  • Thin crystalline silicon (C-Si) solar cell is expected to be a low price energy source by decreasing the consumption of Si. However, thin c-Si solar cell entails the bowing and crack issues in high temperature manufacturing process. Thus, the conventional tabbing process, based on high temperature soldering (> $250^{\circ}C$), has difficulties for applying to thin c-Si solar cell modules. In this paper, a conductive paste (CP) based interconnection process has been proposed to fabricate thin c-Si solar cell modules with high production yield, instead of existing soldering materials. To optimize the process condition for CP based interconnection, we compared the performance and stability of modules fabricated under various lamination temperature (120, 150, and $175^{\circ}C$). The power from CP based module is similar to that with conventional tabbing process, as modules are fabricated. However, the output of CP based module laminated at $120^{\circ}C$ decreases significantly (14.1% for Damp heat and 6.1% for thermal cycle) in harsh condition, while the output drops only in 3% in the samples process at $150^{\circ}C$, $175^{\circ}C$. The peel test indicates that the unstable performance of sample laminated at $120^{\circ}C$ is attributed to weak adhesion strength (1.7 N) between cell and ribbon compared to other cases (2.7 N). As a result, optimized lamination temperature for CP based module process is $150^{\circ}C$, considering stability and energy consumption during the fabrication.

Properties of Ag Thick Films Fabricated by Using Low Temperature Curable Ag Pastes (저온 경화형 Ag 페이스트 및 이를 이용한 Ag 후막의 제조 및 특성)

  • Park, Joon-Shik;Hwang, Joon-Ho;Kim, Jin-Gu;Kim, Yong-Han;Park, Hyo-Derk;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • 제13권1호
    • /
    • pp.18-23
    • /
    • 2003
  • Properties of Ag thick films fabricated by using low temperature curable silver pastes were investigated. Ag pastes were consisted of polymer resins and silver powders. Ag pastes were used for conductive or fixing materials between board and various electrical and electronic devices. Low temperature curable Ag pastes have some advantages over high temperature curable types. In cases of chip mounting, soldering properties were required for screen printed Ag thick films. In this study, four types of Ag pastes were fabricated with different compositions. Screen printed Ag thick films on alumina substrates were fabricated at various curing temperatures and times. Thickness, resistivity, adhesive strength and solderability of fabricated Ag thick films were characterized. Finally, Ag thick films produced using Ag pastes, sample A and B, cured at $150^{\circ}C$ for longer than 6 h and $180^{\circ}C$ for longer than 2 h, and $150^{\circ}C$ for longer than 1 h and $180^{\circ}C$ for 1 h, respectively, showed low resistivities of $10^{-4}$ $∼10^{-5}$ Ωcm and good adhesive strength of 1∼5 Mpa. Soldering properties of those Ag thick films with curing temperatures at solder of 62Sn/36Pb/3Ag were also investigated.