• Title/Summary/Keyword: Low-speed serial communication

Search Result 23, Processing Time 0.03 seconds

A Study on the design and implementation of serial communication using only one pin (단일 핀을 이용한 직렬 통신 설계 및 구현에 관한 연구)

  • Park, Sang-Bong;Heo, Jeong-Hwa
    • The Journal of the Convergence on Culture Technology
    • /
    • v.1 no.3
    • /
    • pp.83-85
    • /
    • 2015
  • It has been increased that communicate each other things such as consumer electronics, mobile equipments and wearable computer with serial communication protocol. The conventional method of SPI and I2C high speed serial communication is widely used with 2 pin of clock and data pin. It has been more important than the speed of data transfer to simplify the hardware structure because the IoT components is reduced the hardware complexity. In this paper, we describe the protocol and implementation of serial data transfer with only one pin. The proposed protocol is suitable for the mobile products that send and receive the small amount of data with low speed and low power consumption.

A Study on the Multi Servo Press System Development of Low Velocity Using Serial Communication (시리얼 통신을 이용한 저속의 멀티 서보 프레스 시스템 개발에 관한 연구)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.248-252
    • /
    • 2014
  • In this paper, press and nut runner used in press-fit or tightening the bolts and nuts at assembling process of automobile parts companies continually demand accuracy and improved productivity. Simultaneous control of production systems through synchronization configuring of the combination multi press-fit system developed multi servo press system using the low-speed serial communication. As a result, the accuracy and the productivity is improved and product quality improvement could be achieved.

Design of a High Speed and Low Power CMOS Demultiplexer Using Redundant Multi-Valued Logic (Redundant Multi-Valued Logic을 이용한 고속 및 저전력 CMOS Demultiplexer 설계)

  • Kim, Tae-Sang;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.148-151
    • /
    • 2005
  • This paper proposes a high speed interface using redundant multi-valued logic for high speed communication ICs. This circuit is composed of encoding circuit that serial binary data are received and converted into parallel redundant multi-valued data, and decoding circuit that convert redundant multi-valued data to parallel binary data. Because of the multi-valued data conversion, this circuit makes it possible to achieve higher operating speeds than that of a conventional binary logic. Using this logic, a 1:4 demultiplexer (DEMUX, serial-parallel converter) IC was designed using a 0.35${\mu}m$ standard CMOS Process. Proposed demultiplexer is achieved an operating speed of 3Gb/s with a supply voltage of 3.3V and with power consumption of 48mW. Designed circuit is limited by maximum operating frequency of process. Therefore, this circuit is to achieve CMOS communication ICs with an operating speed greater than 3Gb/s in submicron process of high of operating frequency.

  • PDF

Current-Mode Serial-to-Parallel and Parallel-to-Serial Converter for Current-Mode OFDM FFT LSI (전류모드 OFDM FFT LSI를 위한 전류모드 직병렬/병직렬 변환기)

  • Park, Yong-Woon;Min, Jun-Gi;Hwang, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • OFDM is used for achieving a high-speed data transmission in mobile wireless communication systems. Conventionally, fast Fourier transform that is the main signal processing of OFDM is implemented using digital signal processing. The DSP FFT LSI requires large power consumption. Current-mode FFT LSI with analog signal processing is one of the best solutions for high speed and low power consumption. However, for the operation of current-mode FFT LSI that has the structure of parallel-input and parallel-output, current-mode serial-to-parallel and parallel-to-serial converter are indispensable. We propose a novel current-mode SPC and PSC and full chip simulation results agree with experimental data. The proposed current-mode SPC and PSC promise the wide application of the current-mode analog signal processing in the field of low power wireless communication LSI.

  • PDF

Implementation of Modular Multiplication and Communication Adaptor for Public Key Crytosystem (공개키 암호체계를 위한 Modular 곱셈개선과 통신회로 구현에 관한 연구)

  • 한선경;이선복;유영갑
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.7
    • /
    • pp.651-662
    • /
    • 1991
  • An improved modular multiplication algorithm for RSA type public key cryptosystem and its application to a serial communication cricuit are presented. Correction on a published fast modular multiplication algorithm is proposed and verified thru simulation. Cryptosystem for RS 232C communication protocol isdesigned and prototyped for low speed data exchange between computers. The system adops the correct algoroithm and operates successfully using a small size key.

  • PDF

Design of Low-power Serial-to-Parallel and Parallel-to-Serial Converter using Current-cut method (전류 컷 기법을 적용한 저전력형 직병렬/병직렬 변환기 설계)

  • Park, Yong-Woon;Hwang, Sung-Ho;Cha, Jae-Sang;Yang, Chung-Mo;Kim, Sung-Kweon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.776-783
    • /
    • 2009
  • Current-cut circuit is an effective method to obtain low power consumption in wireless communication systems as high speed OFDM. For the operation of current-mode FFT LSI with analog signal processing essentially requires current-mode serial-to-parallel/parallel-to-serial converter with multi input and output structure. However, the Hold-mode operation of current-mode serial-to-parallel/parallel-to-serial converter has unnecessary power consumption. We propose a novel current-mode serial-to-parallel/parallel-to-serial converter with current-cut circuit and full chip simulation results agree with experimental data of low power consumption. The proposed current-mode serial-to-parallel/parallel-to-serial converter promise the wide application of the current-mode analog signal processing in the field of low power wireless communication LSI.

An Interrupt Coalescence Method for Improving Performance of Asynchronous Serial Communication (비동기 시리얼 통신의 성능 향상을 위한 인터럽트 통합 기법)

  • Park, Geun-Duk;Oh, Sam-Kweon;Kim, Byoung-Kuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1380-1386
    • /
    • 2011
  • The request of interrupt accompanies a context switching. If the interrupt is frequently requested, this overhead of context switching can reduce seriously the performance of embedded systems. In order to reduce processing overhead due to frequently requested communication interrupts at Asynchronous Serial Communication, this paper introduces the method of Expanded Asynchronous Serial Communication with the Interrupt Coalescence(IC) that accumulates a fixed number of interrupts and processes them in one time. we implement the existing Asynchronous Serial Communication that requests communication interrupts by one byte at an LN2440SBC embedded board with a uC/OS-II and compare interrupt processing time for the performance evaluation about proposed method. As a result, the communication interrupt processing time of proposed method appears in case of low speed(9,600 bps), the decline of an average 25.18% at transmission, the decline of an average 41.47% at reception. and in case of hight speed(115,200 bps), the decline of an average 16.67% at transmission, the decline of an average 25.61% at reception.

Design and FPGA Implementation of FBMC Transmitter by using Clock Gating Technique based QAM, Inverse FFT and Filter Bank for Low Power and High Speed Applications

  • Sivakumar, M.;Omkumar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2479-2484
    • /
    • 2018
  • The filter bank multicarrier modulation (FBMC) technique is one of multicarrier modulation technique (MCM), which is mainly used to improve channel capacity of cognitive radio (CR) network and frequency spectrum access technique. The existing FBMC System contains serial to parallel converter, normal QAM modulation, Radix2 inverse FFT, parallel to serial converter and poly phase filter. It needs high area, delay and power consumption. To further reduce the area, delay and power of FBMC structure, a new clock gating technique is applied in the QAM modulation, radix2 multipath delay commutator (R2MDC) based inverse FFT and unified addition and subtraction (UAS) based FIR filter with parallel asynchronous self time adder (PASTA). The clock gating technique is mainly used to reduce the unwanted clock switching activity. The clock gating is nothing but clock signal of flip-flops is controlled by gate (i.e.) AND gate. Hence speed is high and power consumption is low. The comparison between existing QAM and proposed QAM with clock gating technique is carried out to analyze the results. Conversely, the proposed inverse R2MDC FFT with clock gating technique is compared with the existing radix2 inverse FFT. Also the comparison between existing poly phase filter and proposed UAS based FIR filter with PASTA adder is carried out to analyze the performance, area and power consumption individually. The proposed FBMC with clock gating technique offers low power and high speed than the existing FBMC structures.

Low-Complexity Non-Iterative Soft-Decision BCH Decoder Architecture for WBAN Applications

  • Jung, Boseok;Kim, Taesung;Lee, Hanho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.488-496
    • /
    • 2016
  • This paper presents a low-complexity non-iterative soft-decision Bose-Chaudhuri-Hocquenghem (SD-BCH) decoder architecture and design technique for wireless body area networks (WBANs). A SD-BCH decoder with test syndrome computation, a syndrome calculator, Chien search and metric check, and error location decision is proposed. The proposed SD-BCH decoder not only uses test syndromes, but also does not have an iteration process. The proposed SD-BCH decoder provides a 0.75~1 dB coding gain compared to a hard-decision BCH (HD-BCH) decoder, and almost similar coding gain compared to a conventional SD-BCH decoder. The proposed SD-BCH (63, 51) decoder was designed and implemented using 90-nm CMOS standard cell technology. Synthesis results show that the proposed non-iterative SD-BCH decoder using a serial structure can lead to a 75% reduction in hardware complexity and a clock speed 3.8 times faster than a conventional SD-BCH decoder.

A 0.25-$\mu\textrm{m}$ CMOS 1.6Gbps/pin 4-Level Transceiver Using Stub Series Terminated Logic Interface for High Bandwidth

  • Kim, Jin-Hyun;Kim, Woo-Seop;Kim, Suki
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.165-168
    • /
    • 2002
  • As the demand for higher data-rate chip-to-chip communication such as memory-to-controller, processor-to-processor increases, low cost high-speed serial links\ulcorner become more attractive. This paper describes a 0.25-fm CMOS 1.6Gbps/pin 4-level transceiver using Stub Series Terminated Logic for high Bandwidth. For multi-gigabit/second application, the data rate is limited by Inter-Symbol Interference (ISI) caused by channel low pass effects, process-limited on-chip clock frequency, and serial link distance. The proposed transceiver uses multi-level signaling (4-level Pulse Amplitude Modulation) using push-pull type, double data rate and flash sampling. To reduce Process-Voltage-Temperature Variation and ISI including data dependency skew, the proposed high-speed calibration circuits with voltage swing controller, data linearity controller and slew rate controller maintains desirable output waveform and makes less sensitive output. In order to detect successfully the transmitted 1.6Gbps/pin 4-level data, the receiver is designed as simultaneous type with a kick - back noise-isolated reference voltage line structure and a 3-stage Gate-Isolated sense amplifier. The transceiver, which was fabricated using a 0.25 fm CMOS process, performs data rate of 1.6 ~ 2.0 Gbps/pin with a 400MHB internal clock, Stub Series Terminated Logic ever in 2.25 ~ 2.75V supply voltage. and occupied 500 * 6001m of area.

  • PDF