• Title/Summary/Keyword: Low-power transceiver

Search Result 118, Processing Time 0.028 seconds

Design and Performance Evaluation of On-chip Antenna for Ultra Low Power Wireless Transceiver

  • Kwon, Won-Hyun
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.405-409
    • /
    • 2012
  • In this paper, on-chip antennas applicable to ultra low power wireless transceiver are designed and evaluated. Using $0.18{\mu}m$ SiGe MMIC process, 4 types of antenna with $1{\times}1mm^2$ dimensions are fabricated. The on-wafer measurement in a microwave probe station is conducted to measure the input VSWR and antenna performance of the designed on-chip antenna. Performance evaluation results show that developed antennas can be easily integrated into one-chip RF transceiver for ubiquitous applications, including WPAN and human body communications.

A 900 MHz Zero-IF RF Transceiver for IEEE 802.15.4g SUN OFDM Systems

  • Kim, Changwan;Lee, Seungsik;Choi, Sangsung
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.352-360
    • /
    • 2014
  • This paper presents a 900 MHz zero-IF RF transceiver for IEEE 802.15.4g Smart Utility Networks OFDM systems. The proposed RF transceiver comprises an RF front end, a Tx baseband analog circuit, an Rx baseband analog circuit, and a ${\Delta}{\Sigma}$ fractional-N frequency synthesizer. In the RF front end, re-use of a matching network reduces the chip size of the RF transceiver. Since a T/Rx switch is implemented only at the input of the low noise amplifier, the driver amplifier can deliver its output power to an antenna without any signal loss; thus, leading to a low dc power consumption. The proposed current-driven passive mixer in Rx and voltage-mode passive mixer in Tx can mitigate the IQ crosstalk problem, while maintaining 50% duty-cycle in local oscillator clocks. The overall Rx-baseband circuits can provide a voltage gain of 70 dB with a 1 dB gain control step. The proposed RF transceiver is implemented in a $0.18{\mu}$ CMOS technology and consumes 37 mA in Tx mode and 38 mA in Rx mode from a 1.8 V supply voltage. The fabricated chip shows a Tx average power of -2 dBm, a sensitivity level of -103 dBm at 100 Kbps with PER < 1%, an Rx input $P_{1dB}$ of -11 dBm, and an Rx input IP3 of -2.3 dBm.

Implementation of Active RFID System Using Prediction Packet Algorithm for Ultra Low Power Wireless Communication (초저전력 무선통신을 위한 패킷 예측 알고리즘을 이용한 능동형 RFID 시스템 구현)

  • Lee, Kyung-Hoon;Lee, Bae-Ho;Kim, Young-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.661-668
    • /
    • 2012
  • In this paper, we introduce the low power wireless communication method and propose new protocol and algorithm for wireless communication which can be applied Active RFID system. Transceiver module is composed of MCU, RF transceiver and chip antenna. and it used the lithium coin battery for power supply. The experimental result is confirmed minimum power consumption which show average $10{\mu}A$(packet transmit) and $30{\mu}A$(packet receive) per second. It can be used ultra low power wireless communication. this result is possible for using the algorithm which predict the arrival time of packet. and it indicates that are possible to prevent malfunction and enhance responsiveness.

Ultra-Low Power MICS RF Transceiver Design for Wireless Sensor Network (WSN 을 위한 초저전력 MICS RF 송수신기 기술 개요 및 설계 기법)

  • Gyu-won Kim;Yu-jung Kim;Junghwan Han
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • This paper discusses the design of bio-implanted ultra-low-power MICS RF transceivers for wireless sensor networks. The 400 MHz MICS standard was considered for the implementation of the WBAN wireless sensor system, indirectly minimizing radio propagation losses in the human body and the inference with surrounding networks. This paper includes link budget, various transmission and reception architectures for a system design and ultra-low power transceiver circuit techniques for the implementation of RF transceivers that meet MICS standards.

A Low-Power Low-Complexity Transmitter for FM-UWB Systems

  • Zhou, Bo;Wang, Jingchao
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.194-201
    • /
    • 2015
  • A frequency modulated ultra-wideband (FM-UWB) transmitter with a high-robust relaxation oscillator for subcarrier generation and a dual-path Ring VCO for RF FM is proposed, featuring low power and low complexity. A prototype 3.65-4.25 GHz FM-UWB transceiver employing the presented transmitter is fabricated in $0.18{\mu}m$ CMOS for short-range wireless data transmission. Experimental results show a bit error rate (BER) of $10^{-6}$ at a data rate of 12.5 kb/s with a communication distance of 60 cm is achieved and the power dissipation of 4.3 mW for the proposed transmitter is observed from a 1.8 V supply.

Design of a Low-Power RF Transceiver for Small UAVs Using Switching Power (전원 스위칭을 이용한 저전력 소형무인기용 RF 송수신기 설계)

  • Kim, Hyo-Jong;Lee, Jong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.779-787
    • /
    • 2017
  • In this paper, we designed a RF transceiver for small unmanned aerial vehicle(UAV) using power switching method. To apply for the UAV, several characteristics such as size, weight, and power consumption are very important. To reduce power consumption, we propose a new power switching method. Using the proposed method, we fabricated the RF transceiver needed to establish the data link for a small UAV. The fabricated RF transceiver shows an output power of +25 dBm, a noise figure of 4.56 dB and a received signal strength of -100 dBm. By performing power measurement of proposed switching method, 25 % of power could be reduced. The size of the fabricated RF transceiver is $100{\times}60{\times}5.7mm^3$ and the weight is as small as 38 g.

Analysis of Inductive Power Transfer System According to Layer Structure of Transceiver Coil (자기유도방식 무선전력전송 시스템 송수신 코일 Layer 구조에 따른 특성 분석)

  • Kim, Cheol-Min;Yoo, Jae-Gon;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.78-83
    • /
    • 2019
  • In this study, we analyze the structure of the transceiver coil in the inductive power transfer (IPT) system. In the IPT system, the transceiver coil design needs to have the highest magnetic coupling possible because of the relatively low magnetic coupling due to the large gap of distance without the core. The transmitting coil may be formed as a multi-layer type according to the distance between the transmitting and receiving coils if the receiving coil is configured as a multi-layer type on the inner structure of the receiving apparatus, thereby improving the magnetic coupling and system efficiency. We compare and analyze the coil magnetic coupling, and system efficiency according to the layer structure of the transmitting and receiving coils and verify the analysis by JMAG simulation. Experimental results show that the layer structure of the transceiver should be considered according to the inner space of the receiving device and the spacing distance.

A 77GHz MMIC Transceiver Module for Automotive Forward-Looking Radar Sensor

  • Kang, Dong-Min;Hong, Ju-Yeon;Shim, Jae-Yeob;Yoon, Hyung-Sup;Lee, Kyung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.609-610
    • /
    • 2006
  • A 77GHz MMIC transceiver module consisting of a power amplifier, a low noise amplifier, a drive amplifier, a frequency doubler and a down-mixer has been developed for automotive forward-looking radar sensor. The MMIC chip set was fabricated using $0.15{\mu}m$ gate-length InGaAs/InAlAs/GaAs mHEMT process based on 4-inch substrate. The power amplifier demonstrated a measured small signal gain of over 20dB from $76{\sim}77GHz$ with 15.5dBm output power. The chip size is $2mm{\times}2mm$. The low noise amplifier achieved a gain of 20dB in a band between $76{\sim}77\;GHz$ with an output power of 10dBm. The chip size is $2.2mm{\times}2mm$. The driver amplifier exhibited a gain of 23dB over a $76{\sim}77\;GHz$ band with an output power of 13dBm. The chip size is $2.1mm{\times}2mm$. The frequency doubler achieved an output power of -16dBm at 76.5GHz with a conversion gain of -16dB for an input power of 10dBm and a 38.25GHz input frequency. The chip size is $1.2mm{\times}1.2mm$. The down-mixer demonstrated a measured conversion gain of over -9dB. The chip size is $1.3mm{\times}1.9mm$. The transceiver module achieved an output power of 10dBm in a band between $76{\sim}77GHz$ with a receiver P1dB of -28dBm. The module size is $8{\times}9.5{\times}2.4mm^3$. This MMIC transceiver module is suitable for the 77GHz automotive radar systems and related applications in W-band.

  • PDF

RF Transceiver Design for Impulse Radio UWB System (임펄스 UWB 시스템을 위한 RF 송수신기 설계)

  • Park, Joo-Ho;Oh, Mi-Kyung;Oh, Jung-Yeol;Kil, Min-Su;Kim, Jae-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • In this paper, we design RF transceiver architecture and building blocks for impulse radio UWB system. Impulse radio UWB signal occupies the wide frequency band which is very low transmission power. So, it can minimize the interference effect with the other system. Using UWB technology, we obtain position awareness service. Therefore, we describe the RF transceiver architecture of direct conversion receiver and define the requirement of RF transceiver. Moreover, we implement a prototype RF transceiver based on the presented standard and verify a function and performance through the wireless data communication and ranging test.

  • PDF

High Diversity Transceiver for Low Power Differentially Encoded OFDM System

  • Nadeem, Faisal;Zia, Muhammad;Mahmood, Hasan;Bhatti, Naeem;Haque, Ihsan
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.90-99
    • /
    • 2016
  • In this work, we investigate differentially encoded blind transceiver design in low signal-to-noise ratio (SNR) regimes for orthogonal frequency-division multiplexing (OFDM) signaling. Owing to the fact that acquisition of channel state information is not viable for short coherence times or in low SNR regimes, we propose a time-spread frequency-encoded method under OFDM modulation. The repetition (spreading) of differentially encoded symbols allows us to achieve a target energy per bit to noise ratio and higher diversity. Based on the channel order, we optimize subcarrier assignment for spreading (along time) to achieve frequency diversity of an OFDM modulated signal. We present the performance of our proposed transceiver design and investigate the impact of Doppler frequency on the performance of the proposed differentially encoded transceiver design. To further improve reliability of the decoded data, we employ capacity-achieving low-density parity-check forward error correction encoding to the information bits.