• Title/Summary/Keyword: Low-level radioactive waste disposal

Search Result 166, Processing Time 0.022 seconds

The Study on the Way of Radioactive Waste Disposal in China

  • Keyan Teng;Hao Peng;Caixia Lv;Han Wu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.533-540
    • /
    • 2022
  • Because of the massive development of nuclear power plants in China in recent years, China is facing the challenge of radioactive waste disposal. China has established complete regulatory requirements for radioactive waste disposal, but it also has encountered problems and challenges in low-level radioactive waste disposal in terms of management, selection of disposal facility sites, and implementation of a site selection plan. Three low-level radioactive waste disposal facilities that have been operated in China are described, and their activity limits, locations, and capacities are also outlined. The connotations of "regional" and "centralized" disposal policies are discussed in light of the characteristics of the radioactive waste. The characteristics and advantages of the regional and centralized disposal policies are compared. It is concluded that the regional disposal policy adopted in 1992 can no longer meet the current disposal needs, and China should adopt a combination of the two disposal policies to solve the problem of radioactive waste disposal.

WOLSONG LOW- AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE DISPOSAL CENTER: PROGRESS AND CHALLENGES

  • Park, Jin-Beak;Jung, Hae-Ryong;Lee, Eun-Young;Kim, Chang-Lak;Kim, Geon-Young;Kim, Kyung-Su;Koh, Yong-Kwon;Park, Kyung-Woo;Cheong, Jae-Hak;Jeong, Chan-Woo;Choi, Jong-Soo;Kim, Kyung-Deok
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.477-492
    • /
    • 2009
  • In this paper, we discuss the experiences during the preparation of the Wolsong Low- and Intermediate-Level Radioactive Waste Disposal Center. These experiences have importance as a first implementation for the national LILW disposal facility in the Republic of Korea. As for the progress, it relates to the area of selected disposal site, the disposal site characteristics, waste characteristics of the disposal facility, safety assessment, and licensing process. During these experiences, we also discuss the necessity for new organization and change for a radioactive waste management system. Further effort for the safe management of radioactive waste needs to be pursued.

Determination of Radionuclide Concentration Limit for Low and Intermediate-Level Radioactive Waste Disposal Facility II: Application of Optimization Methodology for Underground Silo Type Disposal Facility (중저준위방사성폐기물 처분시설의 처분농도제한치 설정에 대한 고찰 II: 최적화 방법론 개발 및 적용)

  • Hong, Sung-Wook;Kim, Min Seong;Jung, Kang Il;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.265-279
    • /
    • 2017
  • The Gyeongju underground silo type disposal facility, approved for use in December 2014, is in operation for the disposal of low and very low-level radioactive wastes, excluding intermediate-level waste. That is why the existing low-level radioactive waste level has been subdivided and the concentration limit value for intermediate-level waste has been changed in accordance with Nuclear Safety Commission Notice 2014-003. For the safe disposal of intermediate-level wastes, new optimization methodology for calculating the concentration limit of intermediate radioactive level wastes at an underground silo type disposal facility was developed. According to the developed optimization methodology, concentration limits of intermediate-level wastes were derived and the inventory of radioactive nuclides was evaluated. The operation and post closure scenarios were evaluated for the derived radioactive nuclide inventory and the results of all scenarios were confirmed to meet the regulatory limit. However, in case of $^{14}C$, it was confirmed that additional radioactivity limitation through a well scenario was needed in addition to the limit of disposal concentration. It was confirmed that the derived intermediate concentration limit of radioactive waste can be used as the intermediate-level waste concentration limit for the underground disposal facility. For the safe disposal of intermediate-level wastes, KORAD plans to acquire additional data from the radioactive waste generator and manage the cumulative radioactivity of $^{14}C$.

Preliminary Radiation Exposure Dose Evaluation for Workers of the Landfill Disposal Facility Considering the Radiological Characteristics of Very Low Level Concrete and Metal Decommissioning Wastes (극저준위 콘크리트, 금속 해체방폐물의 방사선적 특성을 고려한 매립형 처분시설 방사선작업자 예비 피폭선량 평가)

  • Ho-Seog Dho;Ye-Seul Cho;Hyun-Goo Kang;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.509-518
    • /
    • 2023
  • The Kori Unit 1 nuclear power plant, which is planned to be dismantled after permanent shutdown, is expected to generate a large amount of various types of radioactive waste during the dismantling process. For the disposal of Very-low-level waste, which is expected to account for the largest amount of generation, the Korea Radioactive waste Agency (KORAD) is in the process of detailed design to build a 3-phase landfill disposal facility in Gyeongju. In addition, a large container is being developed to efficiently dispose of metal and concrete waste, which are mainly generated as Very low-level waste of decommissioning. In this study, based on the design characteristics of the 3-phase landfill disposal facility and the large container under development, radiation exposure dose evaluation was performed considering the normal and accident scenarios of radiation workers during operation. The direct exposure dose evaluation of workers during normal operation was performed using the MCNP computer program, and the internal and external exposure dose evaluation due to damage to the decommissioning waste package during a drop accident was performed based on the evaluation method of ICRP. For the assumed scenario, the exposure dose of worker was calculated to determine whether the exposure dose standards in the domestic nuclear safety act were satisfied. As a result of the evaluation, it was confirmed that the result was quite low, and the result that satisfied the standard limit was confirmed, and the radiational disposal suitability for the 3-phase landfill disposal facility of the large container for dismantled radioactive waste, which is currently under development, was confirmed.

Safety Assessment for the Landfill Disposal of Decommissioning Waste Solidified by Magnesium Potassium Phosphate Cement

  • Jeong, Jongtae;Baik, Min-Hoon;Lee, Jae-Kwang;Pyo, Jae-Young;Um, Wooyong;Heo, Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • The decommissioning of a nuclear power plant generates large amounts of radioactive waste, which is of several types. Radioactive concrete powder is classified as low-level waste, which can be disposed of in a landfill. However, its safe disposal in a landfill requires that it be immobilized by solidification using cement. Herein, a safety assessment on the disposal of solidified radioactive concrete powder waste in a conceptual landfill site is performed using RESRAD. Furthermore, sensitivity analyses of certain selected input parameters are conducted to investigate their impact on exposure doses. The exposure doses are estimated, and the relative impact of each pathway on them during the disposal of this waste is assessed. The results of this study can be used to obtain information for designing a landfill site for the safe disposal of low-level radioactive waste generated from the decommissioning of a nuclear power plant.

Development of an Integrated Monitoring System for the Low and Intermediate Level Radioactive Waste Near-surface Disposal Facility (방사성폐기물 표층처분시설 통합 모니터링 시스템 개발)

  • Se-Ho Choi;HyunGoo Kang;MiJin Kwon;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • In this study, the function and purpose of the disposal cover, which is an engineering barrier installed to isolate the disposal vault of the near-surface disposal facility for radioactive waste from natural/man-made intrusion, and the design details of the demonstration facility for performance verification were described. The Demonstration facility was designed in a partially divided form to secure the efficiency of measurement while being the same as the actual size of the surface disposal facility to be built in the Intermediate & low-level radioactive waste disposal site of the Korea Radioactive Waste Agency (KORAD). The instruments used for measurement consist of a multi-point thermometer, FDR (Frequency Domain Reflectometry) sensor, inclinometer, acoustic sensor, flow meter, and meteorological observer. It is used as input data for the monitoring system. The 3D monitoring system was composed of 5 layers using the e-government standard framework, and was developed based on 4 components: screen, control module, service module, and DBIO(DataBase Input Output) module, and connected them to system operation. The monitoring system can provide real-time information on physical changes in the demonstration facility through the collection, analysis, storage, and visualization processes.

Prediction of Radionuclide Inventory for the Low- and Intermediate-Level Radioactive Waste Disposal Facility by the Radioactive Waste Classification (방사성폐기물 신분류기준을 고려한 중저준위 방사성폐기물 처분시설의 핵종재고량 예측)

  • Jung, Kang Il;Jeong, Noh Gyeom;Moon, Young Pyo;Jeong, Mi Seon;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.63-78
    • /
    • 2016
  • To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment.

Disposal Approach for Long-lived Low and Intermediate-Level Radioactive Waste (장반감기 중저준위 방사성 폐기물의 국외 처분동향과 처분방안)

  • Park, Jin-Beak;Park, Joo-Wan;Kim, Chang-Lak
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.143-152
    • /
    • 2005
  • There certainly exists the radioactive inventory that exceeds the waste acceptance criteria for final disposal of the low and intermediate-level radioactive waste. In this paper, current disposal status of the long-lived radioactive waste in several nations are summarized and the basic procedures for disposal approach are suggested. With this suggestion, intensive discussion and research activities can hopefully be launched to set down the possible resolutions to dispose of the long-lived radioactive waste.

  • PDF

Determination of Radionuclide Concentration Limit for Low and Intermediate-level Radioactive Waste Disposal Facility I : Application of IAEA Methodology for Underground Silo Type Disposal Facility (중저준위 방사성폐기물 처분시설의 처분농도제한치 설정에 대한 고찰 I : IAEA 방법론의 동굴처분시설 적용)

  • Hong, Sung-Wook;Kim, Min Seong;Jung, Kang Il;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.257-264
    • /
    • 2017
  • For the safe disposal of intermediate level radioactive waste according to the Nuclear Safety and Security Commission's notice and KORAD's management plan for low and intermediate level radioactive waste, the disposal concentration limit was derived based on the IAEA methodology. The evaluation of the derived disposal concentration limit revealed that it is not suitable as a practical limit for intermediate level radioactive waste. This is because the disposal concentration limit according to the IAEA methodology is derived using a single value of radioactive waste density and the disposal facility's volume. The IAEA methodology is suitable for setting the concentration limit for vault type disposal, which consists of a single type of waste, whereas an underground silo type disposal facility is composed of several types of radioactive waste, and thus the IAEA methodology has limitations in determining the disposal concentration limit. It is necessary to develop and apply an improved method to derive the disposal concentration limit for intermediate level radioactive waste by considering the radioactivity of various types of radioactive waste, the corresponding scenario evaluation results, and the regulatory limit.

Analysis on the concept design of the nuclear waste disposal site in foreign country (해외 방사성 폐기물 처분장 개념 설계 분석)

  • Seo, Kyoung-Won;Kim, Woong-Ku;Baek, Ki-Hyun;Jun, Seong-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.791-800
    • /
    • 2010
  • This paper presents the construction status and the conceptual designs of midium and high level radioactive waste disposal facilities from all around world. For the midium radioactive waste, a shallow disposal using trench or a deep depth disposal are adopted. However, these are rather focusing on the social and cultural point of view than the technical. Meanwhile, the high level radioactive waste is basically disposed in the deep underground. The corresponding ground conditions are usually dense and composed of sedimentary and crystalline rocks mainly with low permeability. A barrier system is made of canister which consists of copper, titanium, and tin. The inner and outer side of the canister are composed of different materials respectively.

  • PDF