• Title/Summary/Keyword: Low-Energy Algorithm

Search Result 523, Processing Time 0.023 seconds

Implementation of an Optimal Many-core Processor for Beamforming Algorithm of Mobile Ultrasound Image Signals (모바일 초음파 영상신호의 빔포밍 기법을 위한 최적의 매니코어 프로세서 구현)

  • Choi, Byong-Kook;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.119-128
    • /
    • 2011
  • This paper introduces design space exploration of many-core processors that meet high performance and low power required by the beamforming algorithm of image signals of mobile ultrasound. For the design space exploration of the many-core processor, we mapped different number of ultrasound image data to each processing element of many-core, and then determined an optimal many-core processor architecture in terms of execution time, energy efficiency and area efficiency. Experimental results indicate that PE=4096 and 1024 provide the highest energy efficiency and area efficiency, respectively. In addition, PE=4096 achieves 46x and 10x better than TI DSP C6416, which is widely used for ultrasound image devices, in terms of energy efficiency and area efficiency, respectively.

Developments of a Cross-Correlation Calculation Algorithm for Gas Temperature Distributions Based on TDLAS (레이저흡수분광법(TDLAS) 기반 가스온도분포 산정을 위한 상호상관계산 알고리듬 개발)

  • CHOI, DOOWON;KIM, KWANGNAM;CHO, GYONGRAE;SHIM, JOONHWAN;KIM, DONGHYUK;DEGUCHI, YOSHIHIRO;DOH, DEOGHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.127-134
    • /
    • 2016
  • Most of reconstruction algorithms for the calculation of temperature distributions in CT (computed tomography)-TDLAS (tunable diode laser absorption spectroscopy) are based upon two-line thermometry method. This method gives unstable calculation convergence due to signal noise, bias error, and signal mis-matches. In this study, a new reconstruction algorithm based on cross-correlation for temperature calculation is proposed. The patterns of the optical signals at all wave lengths were used to reconstruct the temperature distribution. Numerical test has been made using phantom temperature distributions. Using these phantom temperature data, absorption spectra for all wave lengths were constructed, and these spectra were regarded as the signals that would be obtained in an actual experiments. Using these virtually generated experimental signals, temperature distribution was once again reconstructed, and was compared with those of the original phantom data. Calculation errors obtained by the newly proposed algorithm were slightly large at high temperatures with small errors at low temperature.

A Study on the Site Acceptance Test(SAT) Evaluation Algorithm of Energy Storage System using Li-ion Battery (리튬이온전지를 이용한 전기저장장치의 SAT용 성능평가 알고리즘에 관한 연구)

  • Park, Jea-Bum;Kim, Byung-Ki;Kim, Mi-Sung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.26-37
    • /
    • 2019
  • Recently, standardization of installation progress and technology of site acceptance test(SAT) for energy storage system(ESS) are being required due to performance of ESS depending on working condition and environment even though the quality and safety of each component of ESS is guaranteed. And also, it has been required to perform not only performance testing by H/W equipments but also performance verification by S/W tool, in order to more accurately and reliably validate the performance of the ESS in advanced countries. Therefore, this paper proposes evaluation algorithm for SAT to evaluate performance of ESS and presents modeling of SAT test equipment for ESS by using PSCAD/EMTDC. Furthermore, 30[kW] scaled portable test equipments is implemented based on the proposed algorithm and modeling. From the various simulation and test results, it is confirmed that performance of ESS related to characteristics of capacity and Round-trip efficiency, Duty-cycle efficiency, low voltage ride through(LVRT) and Anti-islanding can be accurately evaluated and that the simulation results of PSCAD/EMTDC are identical to test results of 30[kW] test equipment.

Low Latency Encoding Algorithm for Duo-Binary Turbo Codes with Tail Biting Trellises (이중 입력 터보 코드를 위한 저지연 부호화 알고리즘)

  • Park, Sook-Min;Kwak, Jae-Young;Lee, Kwy-Ro
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.47-51
    • /
    • 2009
  • The low latency encoder for high data rate duo-binary turbo codes with tail biting trellises is considered. Encoder hardware architecture is proposed using inherent encoding property of duo-binary turbo codes. And we showed that half of execution time as well as the energy can be reduced with the proposed architecture.

On-Chip Bus Serialization Method for Low-Power Communications

  • Lee, Jae-Sung
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.540-547
    • /
    • 2010
  • One of the critical issues in on-chip serial communications is increased power consumption. In general, serial communications tend to dissipate more energy than parallel communications due to bit multiplexing. This paper proposes a low-power bus serialization method. This encodes bus signals prior to serialization so that they are converted into signals that do not greatly increase in transition frequency when serialized. It significantly reduces the frequency by making the best use of word-to-word and bit-by-bit correlations presented in original parallel signals. The method is applied to the revision of an MPEG-4 processor, and the simulation results show that the proposed method surpasses the existing one. In addition, it is cost-effective when implemented as a hardware circuit since its algorithm is very simple.

Baseline Correction in Computed Radiography Images with 1D Morphological Filter (CR 영상에서 기저선 보정을 위한 1차원 모폴로지컬 필터의 이용에 관한 연구)

  • Kim, Yong-Gwon;Ryu, Yeunchul
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.397-405
    • /
    • 2022
  • Computed radiography (CR) systems, which convert an analog signal recorded on a cassette into a digital image, combine the characteristics of analog and digital imaging systems. Compared to digital radiography (DR) systems, CR systems have presented difficulties in evaluating system performance because of their lower detective quantum efficiency, their lower signal-to-noise ratio (SNR), and lower modulation transfer function (MTF). During the step of energy-storing and reading out, a baseline offset occurs in the edge area and makes low-frequency overestimation. The low-frequency offset component in the line spread function (LSF) critically affects the MTF and other image-analysis or qualification processes. In this study, we developed the method of baseline correction using mathematical morphology to determine the LSF and MTF of CR systems accurately. We presented a baseline correction that used a morphological filter to effectively remove the low-frequency offset from the LSF. We also tried an MTF evaluation of the CR system to demonstrate the effectiveness of the baseline correction. The MTF with a 3-pixel structuring element (SE) fluctuated since it overestimated the low-frequency component. This overestimation led the algorithm to over-compensate in the low-frequency region so that high-frequency components appeared relatively strong. The MTFs with between 11- and 15-pixel SEs showed little variation. Compared to spatial or frequency filtering that eliminated baseline effects in the edge spread function, our algorithm performed better at precisely locating the edge position and the averaged LSF was narrower.

An Energy-Efficient and Destination-Sequenced Routing Algorithm by a Sink Node in Wireless Sensor Networks (무선 센서 네트워크에서의 싱크 노드에 의한 에너지 효율적인 목적지-순서적 라우팅 알고리즘)

  • Jung, Sang-Joon;Chung, Youn-Ky
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.10
    • /
    • pp.1347-1355
    • /
    • 2007
  • A sensor network is composed of a large number of tiny devices, scattered and deployed in a specified regions. Each sensing device has processing and wireless communication capabilities, which enable it to gather information from the sensing area and to transfer report messages to a base station. The energy-efficient routing paths are established when the base station requests a query, since each node has several characteristics such as low-power, constrained energy, and limited capacity. The established paths are recovered while minimizing the total transmit energy and maximizing the network lifetime when the paths are broken. In this paper, we propose a routing algorithm that each sensor node reports its adjacent link information to the sink node when a sink node broadcasts a query. The sink node manages the total topology and establishes routing paths. This algorithm has a benefit to find an alternative path by reducing the negotiating messages for establishing paths when the established paths are broken. To reduce the overhead of collection information, each node has a link information before reporting to the sink. Because the node recognizes which nodes are adjacent. The proposed algorithm reduces the number of required messages, because sensor nodes receive and report routing messages for establishment at the beginning of configuring routing paths, since each node keeps topology information to establish a routing path, which is useful to report sensing tasks in monitoring environments.

  • PDF

Design of Energy Efficient MAC Protocol for Delay Sensitive Application over Wireless Sensor Network (무선 센서 네트워크상에서 시간지연에 민감한 데이터 전송을 위한 에너지 효율적인 MAC 프로토콜 설계)

  • Oh, Hyung-Rai;Song, Hwang-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1169-1177
    • /
    • 2009
  • This paper presents an energy efficient MAC protocol for delay-sensitive data transmission over wireless sensor network. In general, energy consumption and delay depend on Channel Monitoring Interval and data sensing period at each sensor node. Based on this fact, we propose a new preamble structure to effectively advertise Channel Monitoring Interval and avoid the overhearing problem. In order to pursue an effective tradeoff between energy consumption and delay, we also develop a Channel Monitoring Interval determining algorithm that searches for a sub-optimal solution with a low computational complexity. Finally, experimental results are provided to compare the proposed MAC protocol with existing sensor MAC protocols.

Application of artificial neural network for the critical flow prediction of discharge nozzle

  • Xu, Hong;Tang, Tao;Zhang, Baorui;Liu, Yuechan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.834-841
    • /
    • 2022
  • System thermal-hydraulic (STH) code is adopted for nuclear safety analysis. The critical flow model (CFM) is significant for the accuracy of STH simulation. To overcome the defects of current CFMs (low precision or long calculation time), a CFM based on a genetic neural network (GNN) has been developed in this work. To build a powerful model, besides the critical mass flux, the critical pressure and critical quality were also considered in this model, which was seldom considered before. Comparing with the traditional homogeneous equilibrium model (HEM) and the Moody model, the GNN model can predict the critical mass flux with a higher accuracy (approximately 80% of results are within the ±20% error limit); comparing with the Leung model and the Shannak model for critical pressure prediction, the GNN model achieved the best results (more than 80% prediction results within the ±20% error limit). For the critical quality, similar precision is achieved. The GNN-based CFM in this work is meaningful for the STH code CFM development.

A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems

  • Su, Haoru;Yuan, Xiaoming;Tang, Yujie;Tian, Rui;Sun, Enchang;Yan, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4385-4399
    • /
    • 2021
  • The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.