• Title/Summary/Keyword: Low-Energy Algorithm

Search Result 523, Processing Time 0.026 seconds

Thinning algorithm of hand-printed korean character using wavelet transform (웨이브렛 변환을 이용한 필기체 한글 문자의 세선화 알고리즘)

  • 길문호;유기형;박정호;최재호;곽훈성
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.745-748
    • /
    • 1998
  • Recently, image and voice processing part is using wavelet transform. We propose thining algorithm using wavelet tranform. Wavelet transform consists of low frequency and high frequency in the spatial and frequency domain. After the wavelet decomposition, more than 90 percents of energy are contained in lowest frequency band. Therefor, for images with large difference of gray value between foreground and background like character images, we can more accurately in the lowest frequency band. Lowest frequency band has wavelet transform significant coefficient(WTS) that is required for the thinning algorithm we proposed Paper [3][5][7][8] can not separate consonants and vowels of korean characters. Becuase korean characters have structural feature. This paper can separate consonants and vowels. Simulation executed low frequency image and data compression can reduce 1/4$^{n}$ with level n. we can redcue time complexity 3/8.

  • PDF

Stability and Performance Investigations of Model Predictive Controlled Active-Front-End (AFE) Rectifiers for Energy Storage Systems

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.202-215
    • /
    • 2015
  • This paper investigates the stability and performance of model predictive controlled active-front-end (AFE) rectifiers for energy storage systems, which has been increasingly applied in power distribution sectors and in renewable energy sources to ensure an uninterruptable power supply. The model predictive control (MPC) algorithm utilizes the discrete behavior of power converters to determine appropriate switching states by defining a cost function. The stability of the MPC algorithm is analyzed with the discrete z-domain response and the nonlinear simulation model. The results confirms that the control method of the active-front-end (AFE) rectifier is stable, and that is operates with an infinite gain margin and a very fast dynamic response. Moreover, the performance of the MPC controlled AFE rectifier is verified with a 3.0 kW experimental system. This shows that the MPC controlled AFE rectifier operates with a unity power factor, an acceptable THD (4.0 %) level for the input current and a very low DC voltage ripple. Finally, an efficiency comparison is performed between the MPC and the VOC-based PWM controllers for AFE rectifiers. This comparison demonstrates the effectiveness of the MPC controller.

Fabrication of 7-Diethylamino-4-methylcoumarin-based Scintillator for Gamma Radiation Detection (7-Diethylamino-4-methylcoumarin 기반 섬광체 제작 및 방사능 검출특성평가)

  • Sujung Min;Changhyun Roh;Bumkyoung Seo;Sangbum Hong
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.69-73
    • /
    • 2023
  • Commercially used organic scintillation materials (1,4 di[2-(5phenyloxazolyl)] benzene) have low solubility in solvents and a wide emission energy range, which causes a decrease in detection efficiency. In this study, an organic liquid scintillator with improved detection efficiency was developed using 7-Diethylamino-4-methylcoumarin material to compensate for the disadvantages of existing organic scintillation detectors. And to evaluate the applicability of radiation measurement, the performance of a commercial plastic detector was compared. As a result of analyzing the 60Co detection characteristics by applying 7-Diethylamino-4-methylcoumarin as an alternative to 1,4 di[2-(5phenyloxazolyl)] benzene, the detection efficiency was improved around 2% compared with commercial scintillator when the 7-Diethylamino-4-methylcoumarin content was 0.04 wt%. Based on the results of this study, the possibility of improving detection efficiency through scintillator material modification was confirmed. In addition, since it is possible to discriminate nuclide through the spectrum correction algorithm, it will be possible to inspect and classify various decommissioning wastes generated during the decommissioning process.

An Implementation of the path-finding algorithm for TurtleBot 2 based on low-cost embedded hardware

  • Ingabire, Onesphore;Kim, Minyoung;Lee, Jaeung;Jang, Jong-wook
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Nowadays, as the availability of tiny, low-cost microcomputer increases at a high level, mobile robots are experiencing remarkable enhancements in hardware design, software performance, and connectivity advancements. In order to control Turtlebot 2, several algorithms have been developed using the Robot Operating System(ROS). However, ROS requires to be run on a high-cost computer which increases the hardware cost and the power consumption to the robot. Therefore, design an algorithm based on low-cost hardware is the most innovative way to reduce the unnecessary costs of the hardware, to increase the performance, and to decrease the power consumed by the computer on the robot. In this paper, we present a path-finding algorithm for TurtleBot 2 based on low-cost hardware. We implemented the algorithm using Raspberry pi, Windows 10 IoT core, and RPLIDAR A2. Firstly, we used Raspberry pi as the alternative to the computer employed to handle ROS and to control the robot. Raspberry pi has the advantages of reducing the hardware cost and the energy consumed by the computer on the robot. Secondly, using RPLIDAR A2 and Windows 10 IoT core which is running on Raspberry pi, we implemented the path-finding algorithm which allows TurtleBot 2 to navigate from the starting point to the destination using the map of the area. In addition, we used C# and Universal Windows Platform to implement the proposed algorithm.

Spatial Correlation-based Resource Sharing in Cognitive Radio SWIPT Networks

  • Rong, Mei;Liang, Zhonghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3172-3193
    • /
    • 2022
  • Cognitive radio-simultaneous wireless information and power transfer (CR-SWIPT) has attracted much interest since it can improve both the spectrum and energy efficiency of wireless networks. This paper focuses on the resource sharing between a point-to-point primary system (PRS) and a multiuser multi-antenna cellular cognitive radio system (CRS) containing a large number of cognitive users (CUs). The resource sharing optimization problem is formulated by jointly scheduling CUs and adjusting the transmit power at the cognitive base station (CBS). The effect of accessing CUs' spatial channel correlation on the possible transmit power of the CBS is investigated. Accordingly, we provide a low-complexity suboptimal approach termed the semi-correlated semi-orthogonal user selection (SC-SOUS) algorithm to enhance the spectrum efficiency. In the proposed algorithm, CUs that are highly correlated to the information decoding primary receiver (IPR) and mutually near orthogonal are selected for simultaneous transmission to reduce the interference to the IPR and increase the sum rate of the CRS. We further develop a spatial correlation-based resource sharing (SC-RS) strategy to improve energy sharing performance. CUs nearly orthogonal to the energy harvesting primary receiver (EPR) are chosen as candidates for user selection. Therefore, the EPR can harvest more energy from the CBS so that the energy utilization of the network can improve. Besides, zero-forcing precoding and power control are adopted to eliminate interference within the CRS and meet the transmit power constraints. Simulation results and analysis show that, compared with the existing CU selection methods, the proposed low-complex strategy can enhance both the achievable sum rate of the CRS and the energy sharing capability of the network.

Adaptive Algorithms for Bayesian Spectrum Sensing Based on Markov Model

  • Peng, Shengliang;Gao, Renyang;Zheng, Weibin;Lei, Kejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3095-3111
    • /
    • 2018
  • Spectrum sensing (SS) is one of the fundamental tasks for cognitive radio. In SS, decisions can be made via comparing the test statistics with a threshold. Conventional adaptive algorithms for SS usually adjust their thresholds according to the radio environment. This paper concentrates on the issue of adaptive SS whose threshold is adjusted based on the Markovian behavior of primary user (PU). Moreover, Bayesian cost is adopted as the performance metric to achieve a trade-off between false alarm and missed detection probabilities. Two novel adaptive algorithms, including Markov Bayesian energy detection (MBED) algorithm and IMBED (improved MBED) algorithm, are proposed. Both algorithms model the behavior of PU as a two-state Markov process, with which their thresholds are adaptively adjusted according to the detection results at previous slots. Compared with the existing Bayesian energy detection (BED) algorithm, MBED algorithm can achieve lower Bayesian cost, especially in high signal-to-noise ratio (SNR) regime. Furthermore, it has the advantage of low computational complexity. IMBED algorithm is proposed to alleviate the side effects of detection errors at previous slots. It can reduce Bayesian cost more significantly and in a wider SNR region. Simulation results are provided to illustrate the effectiveness and efficiencies of both algorithms.

Ship nonlinear-feedback course keeping algorithm based on MMG model driven by bipolar sigmoid function for berthing

  • Zhang, Qiang;Zhang, Xian-ku;Im, Nam-kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.525-536
    • /
    • 2017
  • Course keeping is hard to implement under the condition of the propeller stopping or reversing at slow speed for berthing due to the ship's dynamic motion becoming highly nonlinear. To solve this problem, a practical Maneuvering Modeling Group (MMG) ship mathematic model with propeller reversing transverse forces and low speed correction is first discussed to be applied for the right-handed single-screw ship. Secondly, a novel PID-based nonlinear feedback algorithm driven by bipolar sigmoid function is proposed. The PID parameters are determined by a closed-loop gain shaping algorithm directly, while the closed-loop gain shaping theory was employed for effects analysis of this algorithm. Finally, simulation experiments were carried out on an LPG ship. It is shown that the energy consumption and the smoothness performance of the nonlinear feedback control are reduced by 4.2% and 14.6% with satisfactory control effects; the proposed algorithm has the advantages of robustness, energy saving and safety in berthing practice.

A Token Based Clustering Algorithm Considering Uniform Density Cluster in Wireless Sensor Networks (무선 센서 네트워크에서 균등한 클러스터 밀도를 고려한 토큰 기반의 클러스터링 알고리즘)

  • Lee, Hyun-Seok;Heo, Jeong-Seok
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.291-298
    • /
    • 2010
  • In wireless sensor networks, energy is the most important consideration because the lifetime of the sensor node is limited by battery. The clustering is the one of methods used to manage network energy consumption efficiently and LEACH(Low-Energy Adaptive Clustering Hierarchy) is one of the most famous clustering algorithms. LEACH utilizes randomized rotation of cluster-head to evenly distribute the energy load among the sensor nodes in the network. The random selection method of cluster-head does not guarantee the number of cluster-heads produced in each round to be equal to expected optimal value. And, the cluster head in a high-density cluster has an overload condition. In this paper, we proposed both a token based cluster-head selection algorithm for guarantee the number of cluster-heads and a cluster selection algorithm for uniform-density cluster. Through simulation, it is shown that the proposed algorithm improve the network lifetime about 9.3% better than LEACH.

Optimal Power Control Strategy for Wind Farm with Energy Storage System

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.726-737
    • /
    • 2017
  • The use of energy storage systems (ESSs) has become a feasible solution to solve the wind power intermittency issue. However, the use of ESSs increases the system cost significantly. In this paper, an optimal power flow control scheme to minimize the ESS capacity is proposed by using the zero-phase delay low-pass filter which can eliminate the phase delay between the dispatch power and the wind power. In addition, the filter time constant is optimized at the beginning of each dispatching interval to ensure the fluctuation mitigation requirement imposed by the grid code with a minimal ESS capacity. And also, a short-term power dispatch control algorithm is developed suitable for the proposed power dispatch based on the zero-phase delay low-pass filter with the predetermined ESS capacity. In order to verify the effectiveness of the proposed power management approach, case studies are carried out by using a 3-MW wind turbine with real wind speed data measured on Jeju Island.

An Energy-Efficient Asynchronous Sensor MAC Protocol Design for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 비동기 방식의 센서 MAC 프로토콜 설계)

  • Park, In-Hye;Lee, Hyung-Keun;Kang, Seok-Joong
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.86-94
    • /
    • 2012
  • Synchronization MAC Protocol such as S-MAC and T-MAC utilize duty cycling technique which peroidically operate wake-up and sleep state for reducing energy consumption. But synchronization MAC showed low energy efficiency because of additional control packets. For better energy consumption, Asychronization MAC protocols are suggested. For example, B-MAC, and X-MAC protocol adopt Low Power Listening (LPL) technique with CSMA algorithm. All nodes in these protocols joining a network with independent duty cycle schedules without additional synchronization control packets. For this reason, asynchronous MAC protocol improve energy efficiency. In this study, a low-power MAC protocol which is based on X-MAC protocol for wireless sensor network is proposed for better energy efficiency. For this protocol, we suggest preamble numbering, and virtual-synchronization technique between sender and receive node. Using TelosB mote for evaluate energy efficiency.