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Abstract 

 
Cognitive radio-simultaneous wireless information and power transfer (CR-SWIPT) has 
attracted much interest since it can improve both the spectrum and energy efficiency of 
wireless networks. This paper focuses on the resource sharing between a point-to-point 
primary system (PRS) and a multiuser multi-antenna cellular cognitive radio system (CRS) 
containing a large number of cognitive users (CUs). The resource sharing optimization 
problem is formulated by jointly scheduling CUs and adjusting the transmit power at the 
cognitive base station (CBS). The effect of accessing CUs’ spatial channel correlation on the 
possible transmit power of the CBS is investigated. Accordingly, we provide a low-complexity 
suboptimal approach termed the semi-correlated semi-orthogonal user selection (SC-SOUS) 
algorithm to enhance the spectrum efficiency. In the proposed algorithm, CUs that are highly 
correlated to the information decoding primary receiver (IPR) and mutually near orthogonal 
are selected for simultaneous transmission to reduce the interference to the IPR and increase 
the sum rate of the CRS. We further develop a spatial correlation-based resource sharing (SC-
RS) strategy to improve energy sharing performance. CUs nearly orthogonal to the energy 
harvesting primary receiver (EPR) are chosen as candidates for user selection. Therefore, the 
EPR can harvest more energy from the CBS so that the energy utilization of the network can 
improve. Besides, zero-forcing precoding and power control are adopted to eliminate 
interference within the CRS and meet the transmit power constraints. Simulation results and 
analysis show that, compared with the existing CU selection methods, the proposed low-
complex strategy can enhance both the achievable sum rate of the CRS and the energy sharing 
capability of the network. 
 
 
Keywords: Cognitive radio, Resource sharing, SWIPT, Spatial correlation, User access 
control 
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1. Introduction 

DUE to the explosive growth of mobile data traffic, massive device connections, and the 
continuous emergence of new business and application scenarios, scarcity of spectrum and 
energy resources has become a critical issue in the fifth generation (5G) mobile network. 
Consequently, new technologies have emerged. On the one hand, cognitive radio (CR) [1–4] 
and spectrum sharing [5][6] can solve the conflict between the shortage and underutilization 
of spectrum resources. On the other hand, energy harvesting (EH) from the environment [7] is 
a feasible solution for prolonging the lifetime of wireless communication devices. Furthermore, 
as a radio frequency (RF) signal can carry information and energy at the same time, 
simultaneous wireless information and power transfer (SWIPT) [8–11] technology is utilized 
to realize energy harvesting and information decoding from the same received RF signal. 
Cognitive radio-simultaneous wireless information and power transfer (CR-SWIPT) has 
drawn a lot of research interest since it can improve both spectrum efficiency and energy 
efficiency of wireless networks [12–18]. Several resource-sharing strategies have been 
proposed for CR-SWIPT networks. In [12], each primary transmitter’s harvesting and guard 
zones were designed to permit secondary transmitter access. As for multi-antenna cognitive 
receivers, the antenna switching technique [13] selected a subset of the antennas to decode 
information and the rest to harvest energy. Energy harvesting was modeled as a maximization 
problem with multiple constraints and transformed into a convex optimization problem by 
relaxing the integer variable and introducing an auxiliary variable [14]. The energy-rate trade-
off of cognitive massive multi-input multi-output (MIMO) systems with underlay spectrum 
sharing were expressed in closed-form [15]. Authors in [16] investigated the cooperative 
spectrum sharing with SWIPT in the cognitive Internet of Things (IoT) network. IoT devices 
(IoDs) accessed the primary spectrum by serving as orthogonal frequency division 
multiplexing (OFDM) relays. Specifically, in phase 1, the IoD transmitter (DT) utilized a part 
of subcarriers to decode information from primary transmitters and another part of subcarriers 
to harvest energy. In phase 2, DT transmitted the signals of the primary system and itself to 
the corresponding receivers. A multi-antenna CR-SWIPT system with non-orthogonal 
multiple access (NOMA) was considered in [17]. In an underlay scenario, the authors 
minimized system power consumption by jointly designing the transmitting beamformer and 
the receiving power splitter. Besides, energy efficiency was maximized in CR networks with 
NOMA by SWIPT [18]. However, the above methods concentrated on the theoretical 
performance of CR-SWIPT systems. Therefore, some high-complexity algorithms were 
adopted, such as stochastic-geometry [12], the Lagrangian method [14][16], asymptotic 
analysis [15], classic semi-definite relaxation and successive convex approximation [17], 
Dinkelbach method [18], and even one-dimensional search algorithm [14]. The computational 
complexity of these techniques often leads to tremendous consumption of energy. In this paper, 
we aim to propose a low-complexity strategy that is more suitable for practical transmission. 

Spatial channel correlation-based user access control is an effective way to increase the 
throughput of multi-user multi-antenna networks. Ref. [19] proposed a semi-orthogonal user 
selection (SUS) algorithm. The nearly spatially orthogonal users can be grouped for 
simultaneous transmission to enhance the throughput. The authors have proved that, combined 
with zero-forcing beamforming (ZFB), this scheduling algorithm can achieve the same 
asymptotic sum rate of MIMO broadcast channels (BCs) as dirty paper coding (DPC) but with 
much lower complexity. Similarly, the random unitary beamforming (RUB) algorithm [20] 
also selected users for access based on the correlation between the spatial channels and random 
orthonormal beams. It was shown that the throughput of the RUB scheme scales as the same 
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as the capacity of MIMO BCs. Since they can achieve good performance with computational 
efficiency, the spatial channel correlation-based user selection algorithms were introduced to 
the cognitive radio networks (CRNs). Ref. [21-23] proposed a semi-orthogonal user selection 
(SOUS) method. Cognitive users (CUs) whose channels are nearly orthogonal to the primary 
user’s channel were preselected to minimize the interference to the primary user. Then, 
cognitive users whose channels are near orthogonal were scheduled from the preselected CUs. 
Besides, the channel similarity-based user selection (CSUS) algorithm [24][25] was also a 
feasible solution for user access control in practical CRNs. Although it selected CUs according 
to the channel similarity instead of orthogonality, it was essentially a spatial channel 
correlation-based user selection scheme. The RUB scheme has also been applied in the multi-
antenna CRN for user selection and interference cancellation [26]. While there are ongoing 
interests in using spatial channel correlation-based user selections, it is still unclear why such 
schemes can enhance the spectrum efficiency of the multi-user multi-antenna CRNs, 
especially under mutual interference. Besides, there is a lack of consideration for energy 
sharing in the above references. 

Our work is motivated by a joint investigation of both the opportunistic spectrum access 
and energy harvesting in CRNs. In this paper, we study how the achievable downlink sum rate 
of CUs is impacted by the combined effects of spatial channel correlation-based user selection 
and ZFB. Furthermore, a CU selection algorithm and a resource sharing strategy are developed 
for CR-SWIPT networks to maximize the sum rate of CUs as well as improve energy sharing 
between the cognitive radio system (CRS) and the primary system (PRS) under the power and 
interference constraints. The main contributions of this paper are as follows: 
• We formulate the joint spectrum and energy sharing optimization problem for the CR-

SWIPT network and disclose the different impacts of spatial channel correlation-based 
user selection on maximizing the sum rate of the CRS and limiting the interference to 
the primary receiver, respectively. We provide an insight into the difference between 
mutual interference among CUs and the interference from CRS to the primary receiver. 

• To improve the spectrum efficiency of the CRN, we propose the semi-correlated semi-
orthogonal user selection (SC-SOUS) algorithm, which addresses the problem of joint 
user selection and power control for the multi-user multi-antenna underlay CRN. The 
algorithm is different from the SOUS algorithm in [21-23] since they have opposite 
rules in their first selection steps. 

• We further provide the spatial correlation-based resource sharing (SC-RS) strategy to 
enhance resource sharing in the CR-SWIPT network. In addition to discussing 
spectrum efficiency in the existing spatial channel correlation-based user selection 
approaches [21-26], our work also considers energy utilization. 

• We evaluate and analyze the performance of our proposed approaches. The algorithm 
SC-SOUS and SC-RS are compared with the user selection schemes in [21-26] from 
the perspectives of the sum rate and multi-user diversity gain of the CRS, harvested 
power at the energy harvesting primary receiver (EPR), and the computational 
complexity. In addition, the influences of the correlation and orthogonality thresholds 
are also studied on the network’s performance. 

Notations: Vectors and matrices are denoted by lower- and upper-case letters in boldface, 
respectively. The operators ( )T⋅ , ( )†⋅ , ( )Tr ⋅ , ⋅ , cond ( )⋅ , and ( ) 1−⋅  indicate the transpose, 
conjugate transpose, trace, Frobenius norm, condition number, and inverse of a matrix, 
respectively. The symbol diag(x) constructs a diagonal matrix with entries specified by x, and 
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IM represents an identity matrix of dimension M by M. ⋅   stands for the floor operation. 
Finally, k

nC  means the number of combinations of n items taken k at a time. 
The paper is organized as follows. The system model and the problem formulation are 

introduced in Section 2. In Section 3, the effect of spatial channel correlation on the 
performance of the CR-SWIPT network is investigated. Based on the analysis, a user selection 
method and a resource sharing strategy are proposed in Section 4. Performance analysis and 
simulation results are presented in Sections 5 and 6, respectively. Finally, Section 7 concludes 
the paper and presents future work guidelines.  

2. System Model 

2.1 CR-SWIPT Network 
We consider a multi-user CRN with underlay spectrum sharing [27], comprising a point-to-
point PRS and a cellular CRS. There are three single-antenna primary terminals, including a 
primary transmitter (PT), an information-decoding primary receiver (IPR), and an EPR 
[18][28]. The cognitive base station (CBS) has M antennas sufficiently distant from each other 
in a nonline-of-sight rich scattering environment [19] to guarantee the independence between 
spatial sub-channels [29]. The total number of CUs is K, where K ≫ M. Each CU has only one 
antenna. Thus CBS can simultaneously transmit information to CUs in the same spectrum 
band as PT using MIMO spatial multiplexing [21]. The CR-SWIPT network is depicted in Fig. 
1. 
 

 
Fig. 1. CR-SWIPT network. 

 
We use a simple channel model where the channel gain from a transmit antenna to a user 

is described by a zero-mean circularly symmetric complex Gaussian (ZMCSCG) random 
variable [19]. ,c kh and ,p lh are channel vectors from the CBS to the kth CU and the lth primary 
receiver (the 1st is the IPR, and the 2nd is the EPR), respectively, whose entries are complex 
Gaussian random variables with zero-mean and unit variance [23-25]. Meanwhile, ,c kg  is the 

channel gain from PT to the kth CU. Since K ≫ M, it is too complicated for the receivers to 
decode the information when all the K CUs are active simultaneously. To decrease decoding 
complexity and acquire multi-user diversity gain, the CBS can choose M CUs to access every 
time and separate their information by zero-forcing beamforming (ZFB) [19][21-26][30]. The 
set of selected CUs is A , and A ’s cardinality is M=A . ks  is the signal intended to the 

kth CU from CBS, where 2 1ks = , while px  is the transmitted signal from PT to the IPR. Due 
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to the sharing of the same frequency band, the received signal at the IPR is interfered by the 
signals transmitted from CBS. Similarly, the received signals at the CUs are interfered by the 
signal transmitted from the PT. Therefore, the received complex baseband signal at CUk is 
 , , ,k c k c k p ky g x n= + +h x  (1) 

where =x WPs . If { }1 2, ,.. ,. Mk k k=A , ( )1 2
diag , ., ,..

Mk k kP P P=P  accounts for power 

loading, and 
1 2

...
M

T

k k ks s s =  s . We suppose that 
1 2, , ,...

M

TT T T
c k c k c k =  H h h h  is the 

combined channel matrix of all the accessing CUs. According to ZFB, the precoding matrix is 

( ) 1† † −
=W H HH  [19][21-26][30]. kn  is the additive white Gaussian noise at CUk. ,c kh  and 

,p lh  are attainable by CBS through sensing [31]. 

2.2 Mathematical Model of CU Access Control Problem 
In the CR-SWIPT network, CRS accesses the spectrum of PRS by underlay spectrum sharing 
with the interference constraint of the IPR. Aiming to improve the sum rate of CUs and the 
energy from CBS to the EPR, we formulate the CU selection and power control [32] problem 
as P1. 

P1: 

 ( )2, 1,
max log 1 ,

m

m

M

k
m k
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= ∈

+∑P A A
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 ( )† †
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m k
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= ∈
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h WW h
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 ( )† †
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,
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m

M

k p p
m k

P γ
= ∈

≤∑ h WW h
A

 (5) 

 0, 1 ,
mkP m M≥ ≤ ≤  (6) 

where [ ]0,1ζ ∈  is the energy conversion efficiency [16][33-36]. tP  is the maximum transmit 
power of CBS. The signal-to-noise-ratio of the mk th CU is defined as 

 
2

,
2 ,m m

m

m m

c k m k
k

k k

P
SINR

I σ
=

+

h w
 (7) 

where mw  is the mth column of W . 
mkI  is the interference from the PT to CU

mk . 0γ  is the 

interference constraint of the IPR. 2
mkσ  is the noise power at CU

mk . It is too hard to obtain an 

optimal access set ∗A  and a suitable transmit power matrix ∗P  through the exhaustive 
method for its complexity, especially when K is large. Consequently, in this paper, we analyze 
the relationship between spatial channel correlation of CUs and P1 and design low complex 
CU access control methods for practical systems. 
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3. The Effect of Spatial Channel Correlation on the Performance of CR-
SWIPT Network 

In order to focus on the CUs’ access control problem, we set 
1 2

...
Mk k kP P P P= = = =  for 

simplicity, where P should satisfy (4) - (6). It can be easily extended to the general case by a 
water-filling power allocation. Here we analyze the access control problem of CUs based on 
their spatial channel correlation. 

Firstly, Since CBS adopts ZFB, the unified equivalent channel matrix of accessing CUs has 
become to 
 ( ) 1† † ,eq M

−
= = =H HW HH HH I  (8) 

where MI  represents an identity matrix of dimension M by M. 
According to (2) - (4), (6), and (7), it is necessary to minimize ( )†Tr WW  by CU selection 

to enlarge P as much as possible. Because ( ) 1† † −
=W H HH , ( ) 22† 1Tr −= =WW W H  

Besides, 
21−H  and 2H  satisfy the following equation [37]: 

 ( )22 2 2 1 cond .−= =H W H H H  (9) 

Accordingly, we need to increase 2H  and decrease ( )cond H  as much as possible by 
selecting CUs; that is to say, we should choose suitable ,c kh s to comprise H with a relatively 

large 2H  and a small ( )cond H . 
Proposition 1: Selecting M orthogonal CUs with relatively large channel gains to access 

can minimize ( )†Tr WW . 

Proof: For one thing, since 
22

,
1

m

M

c k
m=

=∑H h , larger 
2

, mc kh  can lead to larger 2H ; for 

another, the orthogonality of , mc kh  can minimize ( )cond H  [37]. According to both the two 
aspects above as well as (9), it is evident that the selection of M  orthogonal CUs with 
relatively large 

2
,c kh  can minimize ( ) ( )2 2†Tr cond /= =WW W H H .  

In physical systems, there may not exist M  CUs which are totally orthogonal to each other. 
Therefore, we set orthogonality threshold cδ  and choose “semi-orthogonal” CUs whose 
channel vectors satisfy (10) to access: 

 ( )
†

, ,
, ,

, ,

, .c i c j
c i c j c

c i c j

δ∆ = ≤
h h

h h
h h

 (10) 

Secondly, concerning (2), (3), and (5) - (7), we should design a CU access control scheme 
to minimize † †

,1 ,1p ph WW h  so as to increase P under interference constraint (5). 
Proposition 2: Selecting M orthogonal CUs with relatively large channel gains and whose 

channel vectors are as high correlated to ,1ph  as possible to access can minimize † †
,1 ,1p ph WW h . 

Proof: Here, we analyze † †
,1 ,1p ph WW h  with the singular values and vectors of H . We 

suppose that the singular values of H  are { }1 .., ,. Mλ λ . In order to construct M parallel spatial 
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sub-channels after ZFB, we should choose M orthogonal CUs to access simultaneously to 
ensure that H  is full rank, which is also coincident with Proposition 1. Consequently, we can 
assume that 1 2 .. 0. Mλ λ λ≥ ≥ ≥ > . Moreover, the right singular vector corresponding to iλ  is 

iu , 1 i M≤ ≤ . As a result, ( )2 ,i iλ u  is an Eigen pair of the Hermitian matrix †H H . Since 

( ) 1† † −
=WW H H , 2

1 , i
iλ

 
 
 

u  is an Eigen pair of the Hermitian matrix †WW  [37]. According 

to the spectral decomposition [37], we have  

 † †2

1
,

M

i i i
i
λ

=

=∑H H u u  (11) 

 2
1

† †1 .
M

i i
i iλ=

=∑WW u u  (12) 

Based on the function expansion of the quadratic form [37], we can obtain 

 
22

,1 ,1 ,1
1

† † ,
M

p p i p i
i
λ

=

=∑h H Hh h u  (13) 

 
2

,1 ,
† †

1 ,12
1

1 .
M

p p p i
i iλ=

=∑h WW h h u  (14) 

From (14), it is obvious that †
,1 ,

†
1p ph WW h  can be represented by a summation which 

contains M  terms, each of which includes two parts: 2

1

iλ
 and 

2

,1p ih u . Since { },1i i M≤ ≤u  

is a set of orthonormal bases of the M  dimensional complex space [37], 
2 2

,1 ,1
1

=
M

p i p
i=
∑ h u h . 

From (14), we find that †
,1 ,

†
1p ph WW h  can be minimized from two aspects: 

1) Maximize all of the singular values of H  so as to minimize each 2

1

iλ
; 

2) Maximize the term 
2

,1 1ph u , which is multiplied by 2
1

1
λ

 — the minimum Eigen value 

of †WW  — so as to minimize the sum of all the multiplications. 
Firstly, in order to minimize all the singular values of H , on the one hand, since 

222
,

1 1
m

M M

i c k
i m
λ

= =

= =∑ ∑H h  [37], we need to choose ,c kh s with large Frobenius norms as the 

row vectors of H ; on the other hand, orthogonal CUs should be selected to minimize the 
condition number of H , which is ( ) 1cond / Mλ λ=H , so as to guarantee that all the singular 
values of H  are large and all the Eigen values of †WW  are small. 

Secondly, since 
2 2

,1 ,1
1

=
M

p i p
i=
∑ h u h  and each term on the left side is non-negative, we try 

to construct H  by selecting ,c kh s to maximize 
2

,1 1ph u . Considering 1 1=u , we have 

 ,1 1 ,1 ,1 1( , ),p p p= ∆h u h h u  (15) 
where 
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 ,1 1 ,1 1
,1 1

,1 1 ,1

( , ) p p
p

p p

∆ = =
h u h u

h u
h u h

 (16) 

is defined as the correlation coefficient of ,1ph  and 1u , which reveals the spatial similarity of 
the two vectors. Therefore, we are aiming at constructing H  with the right singular vector 1u  

resembles ,1
,1

,1

p
p

p

=
h

h
h

 as much as possible. Since 1u  is the eigenvector of †H H  

corresponding to its largest eigenvalue, based on the characteristic of the Rayleigh quotient, if 
2 1=x , only when 1=x u , the quadratic form † †xH Hx  can be maximized. Accordingly, we 

should construct H  to make 
 

2
,1

,

†

1

†arg ma .xp
=

=
x x

h xH Hx  (17) 

Since 

 
1 1

†
, ,

2† † † † †
,1 ,1 ,1 ,1 ,1 , , ,1

1 1
, ,

... . ,..
m m

M M

c k c k
M M

p p p p p c k c k p m
m m

c k c k

η
= =

   
   

= = =   
   
   

∑ ∑
h h

h H Hh h h h h h h
h h

 (18) 

where , ,
†

1mm c k pη = h h , the maximization of †
,1 ,1

†
p ph H Hh  and ( ), 1m m Mη ≤ ≤  are 

equivalent. The correlation coefficient of ,1ph  and , mc kh  is 

 , ,1
, ,1

,

†

( , ) .m

m

m

c k p
c k p

c k

∆ =
h h

h h
h

 (19) 

If the coefficient is bigger, ,1ph  can lead to a bigger †
,1 ,1

†
p ph H Hh , which implies a greater 

similarity between ,1ph  and 1u . 

As stated above, we can minimize †
,1 ,

†
1p ph WW h  by choosing M  orthogonal ,c kh s with 

relatively large Frobenius norms and highly correlated with ,1ph  as row vectors of H .  
Here are some explanations for Proposition 2. After ZFB, the energy distribution of 

transmitted signals from CBS is decided by W , hence the physical meaning of 
,1 ,1

† †min p pW
h WW h  is to minimize the energy projected on the interference channel ,1ph  so as 

to minimize the interference from CBS to the IPR. Equivalently, when 0γ  is given, 

,1 ,1
† †min p pW

h WW h  means to maximize P  under the constraint (5). Furthermore, due to 

( )† 1† −
=W H HH , the energy distribution of W  is the inversion of that of H . Accordingly, 

the less correlative between columns of W  and ,1ph , the more correlative between rows of 

H  and ,1ph . Therefore, we should choose ,c kh s which are high correlated with ,1ph  as the 

rows of H  so as to minimize †
,1 ,

†
1p ph WW h . 

In physical systems, there may not exist M  ,c kh s which are totally correlated to ,1ph . 
Hence, we set correlation threshold iδ  and choose “semi-correlated” CUs whose channel 
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vectors satisfy (20) to access: 

 
†

, ,1
, ,1

, ,1

( , ) .c k p
c k p i

c k p

δ∆ = ≥
h h

h h
h h

 (20) 

In this paper, we propose a semi-correlated semi-orthogonal user selection (SC-SOUS) 
method by jointly considering the above two steps. The SC-SOUS method can enhance the 
transmit power of CBS under the interference and power constraints so as to increase the sum 
rate of CRS and the energy to EPR. However, in these two steps, we have not paid attention 
to the term †

,2 ,
†

2p ph WW h  in (3). Therefore, we can improve the energy sharing efficiency 
further. 

Here we analyze how to amplify the energy from CBS to the EPR further. According to the 
above analysis, the transmit power P  has been determined by Proposition 1 and 2. Thus now 
we try to increase †

,2 ,
†

2p ph WW h  in (3). Similar to Proposition 2, based on the properties of 
the Hermitian matrix eigenvalues, Rayleigh quotient, spectral decomposition, and quadratic 
form, it can be concluded that selecting CUs whose channel vectors are orthogonal to ,2ph  to 

access is beneficial for maximizing †
,2 ,

†
2p ph WW h . Similarly, it is difficult to find M  ,c kh s 

which are totally orthogonal to ,2ph . Hence, we set orthogonality threshold eδ  and choose the 
“semi-orthogonal” CUs which satisfy (21) to access: 

 
†

, ,2
, ,2

, ,2

( , ) = .c k p
c k p e

c k p

δ∆ ≤
h h

h h
h h

 (21) 

Maximization of the harvested power at EPR is discussed further in this step, leading to 
improved capability of energy sharing. As a result, we bring together all the three steps above 
and propose the spatial correlation-based resource sharing (SC-RS) strategy in Section 4. 

4. Spatial Correlation-Based Resource Sharing  
According to the analysis in Section 3, firstly, we propose the SC-SOUS method in Table 1. 

 
Table 1. Specific steps of the proposed SC-SOUS method 

1) iδ -correlated (semi-correlated) CU selection 
a) φ=A ; 
b) The candidates of CUs satisfying iδ -correlated condition are denoted by 

( ){ }1 ,1 ,, , 1,..., ;p c k iT k k Kδ= ∆ ≥ =h h                                      (22) 

c) The first selected CU is determined by ( )
1

,1 arg max c k
k T∈

= hA . 

1 1T T← −A . 
2) cδ -orthogonal (semi-orthogonal) CU selection 

a) 1i = ; 
b) While i M<  

i. 1i i= +  
ii. The candidates of CUs satisfying cδ -orthogonal condition are denoted by 
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 ( )( ){ }, 1, 1 , , ;i c k c ic iT k k Tδ −−= ∆ ≤ ∀ ∈h hA                                (23) 

iii. The i th selected CU is determined by 
 ( ) ,arg max .

i
c k

k T
i

∈
= hA                                             (24) 

end While 
 

The main difference between the proposed SC-SOUS method and the semi-orthogonal user 
selection (SOUS) method [21-23] is in step 1. In this paper, we have developed Proposition 
1 and 2 as well as the user selection criteria (10) and (20) through the analysis of (2) - (6) in 
the optimization problem. The conclusion in (20) is opposite to that in [21-23]. In the SOUS 
method [21-23], the semi-orthogonal selection was adopted in both steps 1) and 2). However, 
interference between accessing CUs is canceled by ZFB, so the purpose of user selection inside 
the CRS is to maximize the power from the CBS to CUs; on the contrary, between CUs and 
the IPR, user selection is aiming at minimizing the power from CBS to the IPR. According to 
the opposite goals in these two steps, we should give opposite criteria for user selections. As 
a result, in this paper, our SC-SOUS method has applied the opposite “semi-correlated” and 
“semi-orthogonal” standards in the two steps, respectively, which is suitable for the 
requirements of user selections. 

Secondly, the SC-RS strategy is shown in the following. We still compare the SC-RS 
strategy with the SOUS method [21-23]. iδ -correlated user selection is adopted in step 2) of 
the proposed approach instead of pδ -orthogonal user selection in the SOUS method [21-23]. 
Moreover, eδ -orthogonal CU selection is also applied to improve energy utilization. 

 
Table 2. Specific steps of the proposed SC-RS strategy 

1) eδ -orthogonal CU selection 
a) φ=A ; 
b) The candidate set S  is denoted by 

 ( ){ },2 ,, , 1,..., ;p c k eS k k Kδ= ∆ ≤ =h h                                (25) 

2) iδ -correlated (semi-correlated) CU selection 
a) The candidate set 1Q  is denoted by 

 ( ){ }1 ,1 ,, , ;p c k iQ k k Sδ= ∆ ≥ ∀ ∈h h                                    (26) 

b) The first selected CU is determined by ( )
1

,1 arg max c k
k Q∈

= hA . 

1 1Q Q← −A . 
3) cδ -orthogonal (semi-orthogonal) CU selection 

a) 1i = ; 
b) While i M<  

i. 1i i= +  
ii. The candidates of CUs satisfying cδ -orthogonal condition are denoted by 

 ( )( ){ }, 1, 1 , , ;i c k c ic iQ k k Qδ −−= ∆ ≤ ∀ ∈h hA                                (27) 

iii. The i th selected CU is determined by 
 ( ) ,arg max .

i
c k

k Q
i

∈
= hA                                             (28) 
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end While 
4) Combine the channel vectors , ,c k k ∈h A  to make the matrix H , and acquire ( )† 1† −

=W H HH  
as the ZFB precoding matrix for the CBS in order to eliminate the interference between CUs; 

5) Maximize P  under the constraints (4) and (5). 

5. Performance Analysis 

5.1 Multi-User Diversity Gain 
This subsection calculates the multi-user diversity gain in the SC-SOUS algorithm and SC-RS 
strategy. Multi-user diversity gain is related to the size of the set from which CU k  is chosen 
[19][23]. Firstly, considering the two steps in the SC-SOUS algorithm, we estimate the 
cardinality | |iT  by calculating the probability that CUk can be chosen in each step. In the 
following, we will analyze the multi-user gain for both stages of the user selection. 
(1). iδ -correlated CU selection 

In the iδ -correlated CU selection, the CU candidates are chosen based on the iδ -
correlation. For CU k , the probability of this user being selected by the iδ -correlated CU 
selection algorithm is [See Appendix]. 

 { } ( ) 12
1Pr 1 .

M

ik T δ
−

∈ = −  (29) 

Applying the law of large numbers, at large K , the cardinality 1| |T  can be approximated 
as 

 { } ( ) 12
1 1Pr 1 .

M

iT K k T K δ
− ≈  ∈  = −    

 (30) 

(2). cδ -orthogonal CU selection 
In this step, CUk is chosen based on the cδ -orthogonality defined in (10). For CUk, the 
probability of this user being selected by the cδ -orthogonal CU selection is [19][23] 

 { } ( )2Pr , ,
c

ik T I i M i
δ

∈ = −  (31) 

where ( , )xI a b  denotes the regularized incomplete beta function. For a large number of 
CUs, iT  can be approximated as 

 { } ( ) ( )2

12
1 Pr 1 , , 2,..., .

c

M

i i iT T k T K I i M i i M
δ

δ
−  ≈ ∈ ≈ − − =    

 (32) 

Secondly, we analyze the multi-user diversity gain in the SC-RS strategy. Since the SC-
RS strategy has the additional eδ -orthogonal CU selection, the cardinality of S  can be 
approximated as [23] 

 { } ( )( )12Pr 1 1 .
M

eS K k S K δ
− ≈  ∈  = − −    

 (33) 

Consequently, the size of 1Q  in the iδ -correlated CU selection step can be approximated 
as 

 { } ( )( )( )1 12 2
1 1Pr 1 1 1 .

M M

e iQ S k Q K δ δ
− −  ≈ ∈ ≈ − − −    

 (34) 
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And then, the size of iQ  in the cδ -orthogonal CU selection step can be approximated as 

 { } ( )( )( ) ( )2

1 12 2
1 Pr 1 1 1 , ,

c

M M

i i e iQ Q k Q K I i M i
δ

δ δ
− −  ≈ ∈ ≈ − − − −    

 (35) 

where 2,...,i M= . 

5.2 Computational Complexity 
Here we analyze the computational complexities of the proposed SC-SOUS algorithm and SC-
RS strategy and compare them with the SOUS algorithm. Meanwhile, we apply the exhaustive 
search as the baseline. 

Firstly, the SC-SOUS algorithm consists of two steps, which are “ iδ -correlated CU 
selection” and “ cδ -orthogonal CU selection.” 
(1). In the “ iδ -correlated CU selection” step, the operations in (20) should be carried out for 

each ,c kh  and ,1ph . So there are K  times inner products and 2 K  times vector Frobenius 

norm calculations. We suppose µ  as a constant proportionality corresponding to one 
inner product and two vector Frobenius norm calculations. Consequently, the complexity 
of the “ iδ -correlated CU selection” step is Kµ . 

(2). In the “ cδ -orthogonal CU selection” step, we denote the number of selected CUs in the 
i th-selection by iJ . Then the computational complexity of this step is 

 
1

1
.

M

i
i

Jµ
−

=
∑  (36) 

Therefore, the complexity of the SC-SOUS algorithm is 

 
1

1
.

M

i
i

K Jµ
−

=

 
+ 

 
∑  (37) 

Now we analyze µ  in terms of adding or multiplying two real numbers. Since ,c kh  and 

,1ph  are all 1 M×  vectors, the inner product needs 4 M  multiplications and 2 M  additions. 
Besides, the Frobenius norm calculation of a 1 M×  vector needs 2 M  multiplications and M  
additions. Accordingly, 12Mµ = . 

Given all that and K ≫ M, the complexity order of the SC-SOUS algorithm is ( )2O KM . 
We combine the SC-SOUS with ZFB to accomplish user selection and interference 

cancellation. ZFB is realized by matrix inversion whose complexity is 3( )O M . Since K ≫ M, 
the complexity of SC-SOUS+ZFB is still ( )2O KM . 

Secondly, we consider the SC-RS strategy. This strategy has only one more step than SC-
SOUS+ZFB, which is the “ eδ -orthogonal” CU selection. Based on the complexity analysis of 
the “ iδ -orthogonal” CU selection step in the SC-SOUS algorithm, we know that the 
complexity of the “ eδ -orthogonal” CU selection is also Kµ . Consequently, the complexity 
of the SC-RS strategy is still ( )2O KM . 
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The computational complexities of the proposed SC-SOUS algorithm combined with ZFB, 
SC-RS strategy, the SOUS algorithm together with ZFB [23], and the exhaustive-search (ES) 
CU selection combined with ZFB are summarized in Table 3. The two algorithms proposed 
in this paper have the same complexity order with the SOUS+ZFB in [23]. An exhaustive 
search, therefore, involves formidable complexity. For example, if 300K =  and 8M = , we 
have 3 177.5830 10M

KC M = × ≫ 2 41.92 10KM = × . 
 

Table 3. The complexity of four resource sharing methods 
 SC-SOUS + ZFB SC-RS SOUS + ZFB [23] ES + ZFB 

User selection ( )2O KM  ( )2O KM  ( )2O KM  ( )M
KO C  

ZFB ( )3O M  ( )3O M  ( )3O M  ( )3O M  

In all ( )2O KM  ( )2O KM  ( )2O KM  ( )3M
KO C M  

6. Simulation Results and Discussions 
In the simulation, it is supposed that 300K =  [23] and 8M = . tP  changes from 1w to 100w. 
Noise power 2 1wkσ =  [26][38]. The transmit power of PT is 1wpP = . The interference 
constraint of the IPR is 0 0.1 tPγ =  [39], and the energy conversion efficiency of the EPR is 

0.6ζ =  [33]. Firstly, we set 0.45i pδ δ= = , 0.4c eδ δ= =  (where pδ  and cδ  are the 
thresholds of the two selections in the SOUS algorithm [21-23], respectively). The Monte 
Carlo simulation results of the sum rate of CRS and the harvested power at EPR from the CBS 
are shown in Fig. 2 and Fig. 3. 

 
Fig. 2.  Achievable sum rate of CRS 
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Fig. 3.  EPR’s harvested power from CBS 

 
The achievable sum rates of CRS acquired by seven different methods are shown in Fig. 2. 

The proposed SC-SOUS method can provide a larger sum rate and higher spectrum sharing 
efficiency than the other methods. This method is based on a theoretical analysis of spatial 
channel correlation, which has two conclusions about the transmit power at CBS. First, the 
CBS can increase transmit power when the selected CUs are semi-correlated with the IPR (it 
is opposite to [21-23]). Second, semi-orthogonality between the selected CUs can also increase 
the transmit power of CBS and the achievable sum rate of CRS (it is the same with [21-23], 
but there was no proof in the above references). The SC-SOUS method has made a distinction 
between two selection steps. The first CU selection step is designed to minimize the power 
received by the IPR from CBS; conversely, since ZFB removes the interference between CUs, 
the second CU selection step aims to increase the power from CBS to selected CUs after ZFB. 
The opposite objectives lead to different selection criteria, both of which can improve the 
performance of the CR network. 

The proposed SC-RS strategy gives further consideration of energy sharing efficiency. The 
tradeoff is made between the CUs' sum rate and the EPR's harvested energy, so there is a slight 
sum-rate loss compared with the SC-SOUS method. However, the sum rate is still higher than 
the other methods. In the SOUS [21-23] and CSUS [24][25] methods, the first user selection 
step is designed as “semi-orthogonal selection” instead of “semi-correlated selection,” which 
goes against the maximization of P  under the constraint of (5). As a result, both the power 
gain and CUs' sum rate decrease. But ZFB precoding in these methods and the RUB [26] 
method, as well as the “best user” selection in the best user access (BUA) method, is beneficial 
for the performance, so all their sum rates are higher than that in the Random Access (RMA) 
method. 

The curves in Fig. 3 show the EPR's harvested power from CBS obtained by seven different 
methods. The proposed SC-RS strategy can provide higher power harvesting efficiency for the 
EPR than the other methods, which means it has the highest energy sharing capability. Besides 
the increase in P  caused by the “ iδ -correlated” and “ cδ -orthogonal” selection steps, the SC-
RS strategy further improves †

,2 ,
†

2p ph WW h  by the “ eδ -orthogonal” CU selection to enhance 
the energy harvesting efficiency of the EPR. Although there is no “ eδ -orthogonal” selection 
step in the proposed SC-SOUS method, the EPR's harvested power increases with the other 
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two selection steps. The “ pδ -orthogonal” selection step in SOUS [21-23] and CSUS [24][25] 
methods reduces the transmit power of CBS, so the EPR's harvested power is smaller than that 
in the other methods. 

 
Fig. 4.  Achievable sum rate of CRS with different iδ  

 
In Fig. 4, we demonstrate the achievable sum rate of the CRS with different values of iδ . 

We set 0.4e cδ δ= = , while iδ = 0.45, 0.3, 0.25, and 0 in the SC-RS strategy and the SC-SOUS 
method. When iδ  decreases, the “ iδ -correlated” selection becomes less and less effective. As 
a result, the CR system's sum-rate decreases in these two methods. When 0iδ = , the “ iδ -
correlated” user selection becomes invalid, the sum rates in the SC-RS strategy and SC-SOUS 
method are even lower than that in the RUB [26] method. The above results reflect the 
effection of “ iδ -correlated” selection in improving the sum rate of CRS. Correspondingly, we 
set pδ = 0.45, 0.6, 0.8, and 1 in SOUS [21-23] method, which can also make its “ pδ -
orthogonal” selection less and less effective and become invalid when 1pδ = . The simulation 
results show that the CR system's sum rate increases along with pδ , and the highest sum rate 
is acquired when 1pδ = . It is evident that the “ pδ -orthogonal” selection backfires. Besides, 
when 0iδ =  and 1pδ = , both “ iδ -correlated” selection in the SC-SOUS method and “ pδ -
orthogonal” selection in the SOUS [21-23] method are invalid, so these two methods can 
achieve the same sum rate. This result is consistent with our analysis. 
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Fig. 5.  EPR's harvested power from CRS with different iδ  

 
Fig. 5 exhibits the EPR's power charged from the CBS. We also set 0.4e cδ δ= = , iδ  = 

0.45, 0.3, 0.25, 0, and pδ  = 0.45, 0.6, 0.8, 1, respectively. The power obtained by the SC-RS 
strategy decreases along with iδ . However, it is always higher than that in the other methods. 
The main reason is that when iδ  decreases, the “ iδ -correlated” selection becomes more and 
more ineffective, which reduces P ; nevertheless, the “ eδ -orthogonal” CU selection can 
enhance the power harvesting. On the contrary, when pδ  increases, the “ pδ -orthogonal” 
selection in the SOUS [21-23] method becomes more and more ineffective, which means the 
selected CUs’ spatial channel vectors are more and more correlative to the IPR’s spatial 
channel vector ,1ph . As shown in Fig. 5, the power acquired by the EPR increases, which 
confirms the conclusion of Proposition 2. 

Fig. 6 provides the charging power from the CBS to the EPR when 0.45iδ =  and 0.4cδ = , 
as well as  eδ  = 0.4, 0.6, 0.8, and 1. It is shown that in the proposed SC-RS strategy, when eδ  
increases, the power for EPR decreases but is still higher than that in all the other methods. 
Since the proposed strategy can choose CUs whose channel vector ,c kh  satisfying the “ eδ -
orthogonal” condition with ,2ph  to access, it can improve the energy sharing performance. 
The growing of eδ  can reduce the orthogonality between selected ,c kh  and ,2ph , which 
reduces the harvested power. When 1eδ = , the orthogonality disappears, so the harvested 
power of the EPR from CBS is the same in both the SC-RS strategy and the SC-SOUS method, 
whose power gains are acquired from the increase of P  by the “ iδ -correlated” and “ cδ -
orthogonal” selections. 
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Fig. 6.  EPR's harvested power from CBS with different eδ  

 
Fig. 7.  Achievable sum rate of CRS with different cδ  

 
From Fig. 7, it can be seen that the achievable sum rate of the CRS varies along with cδ , 

whereas 0.45iδ =  and 0.4eδ =  remain the same. As cδ  increases, the orthogonality between 
chosen CUs decreases, leading to the reduction of P  due to the constraints (4) and (5). 
Therefore, the sum rates acquired by the SC-RS strategy, the SC-SOUS and SOUS [21-23] 
methods become lower and lower. The orthogonality between selected CUs disappears when 

1cδ = . However, the “ iδ -correlated” selection step can bring larger sum rates for the proposed 
methods than the SOUS [21-23] method. The above results reveal the effection of the “ cδ -
orthogonal” selection. 
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Fig. 8 shows the charging power for the EPR from CBS in different cases. We keep 
0.45iδ =  and 0.4eδ = , and set cδ  = 0.4, 0.6, 0.8 and 1 in four subfigures, respectively. The 

illustration shows that along with the increase of cδ , the harvested power in the SC-SOUS 
method and SC-RS strategy decreases. Nevertheless, the unique “ eδ -orthogonal” CU selection 
of the SC-RS strategy can make it superior to the other methods. 
 

 
Fig. 8.  EPR's harvested power from CRS with different cδ  

7. Conclusions 
In this paper, we have investigated the spatial channel correlation-based resource sharing for 
multi-user multi-antenna CR-SWIPT networks. The optimization of the CU access control and 
power allocation is implemented to maximize the resource sharing efficiency according to the 
theoretical analysis of the relationship between accessing CUs' spatial channel vectors and the 
transmitted power of the CBS. We developed the low-complexity SC-SOUS method and SC-
RS strategy, including “semi-correlated” and “semi-orthogonal” user selections, to improve 
the achievable sum rate of the CRS and the harvested power at the EPR. Simulation results 
with different parameter values have confirmed our analysis and shown that the proposed 
methods can notably enhance the spectrum and energy sharing capability in CR-SWIPT 
networks. The proposed low-complex methods are suitable for realistic scenarios and systems, 
especially when the total number of CUs is large. In future work, we can extend our methods 
to the cognitive radio networks with multiple groups of primary users, where each group 
operates on its licensed frequency band. The CRS can choose the favorite band to access. The 
primary users on the selected frequency band have an appropriate spatial channel correlation 
with the CUs. Moreover, we can consider the different decay situations in various frequency 
bands and achieve a good tradeoff between increasing the power of useful signals and reducing 
the interference through spectrum decisions. Besides, we also intend to investigate the scenario 
in that CUs have multiple antennas by supposing each antenna as an independent virtual user. 



3190                                                                                    Rong et al.: Spatial Correlation-based Resource Sharing in  
Cognitive Radio SWIPT Networks 

Appendix 

We assume that ,1 ,1 ,1/p p p=h h h‖ ‖, and decompose ,c kh  into ,1ph  and its orthogonal 

components ,1p
⊥h  as ||

, , ,1 , ,1c k c k p c k p
⊥ ⊥= +h h h h h , where ( )|| 2

, ~ 1,1c k Γh‖ ‖ , ( )2
, ~ 1,1c k M⊥ Γ −h‖ ‖  

[23]. Here ( )~ ,ρ λΓx  means that x  is distributed according to the gamma distribution with 
parameters ( ),ρ λ . Besides, | 2|

,| |c kh  and 2
,c k
⊥h‖ ‖  are independent, and 

|2 2 2
, ,

|
,| |c k c k c k
⊥= +h h h‖ ‖ ‖ ‖ . Since |

, , ,1
| †
c k c k p=h h h  and , , ,1

†( )c k c k p
⊥ ⊥=h h h , according to (19), we 

have 

 
2 2

, ,1 ,2
, ,1 2 2 2 2

, ,1

† |

† |
, ,

|

|

| | | |
( , ) .

| |
c k p c k

c k p
c k p c k c k

⊥∆ = =
+

h h h
h h

h h h h‖ ‖‖ ‖ ‖ ‖
 (38) 

Based on the property of gamma distribution, we can obtain 

 ( )
2

, ,12
, ,

†

2†1 2
, ,1

| |
( , ) ~ 1, 1 ,c k p

c k p
c k p

Mβ∆ = −
h h

h h
h h‖ ‖‖ ‖

 (39) 

where ( , )a bβ  denotes the beta distribution. Since the CDF of ( , )a bβ  is the regularized 
incomplete beta function ( ),xI a b , we can get 

 { } ( )2

2
, ,1 2

1 2 2
, ,1

†

†

| |
Pr Pr 1 1, 1 .

i

c k p
i

c k p

k T I M
δ

δ
  ∈ = ≥ = − − 
  

h h
h h‖ ‖‖ ‖

 (40) 

From the definition of the regularized incomplete beta function, we can have 

 ( ) ( )
( )2

2 ,1, 1
1, 1 ,

1, 1i

iB M
I M

B Mδ

δ −
− =

−
 (41) 

where ( , , )B x a b  and ( , )B a b  are the incomplete beta function and the beta function, 
respectively. Specifically, we have 
 ( ) ( ) 11

0
, , 1 ,

x baB x a b t t dt−−= −∫  (42) 

 ( ) ( )
1 11

0
, 1 ,baB a b t t dt−−= −∫  (43) 

Therefore, we can obtain 
 { } ( ) 12

1Pr 1 .
M

ik T δ
−

∈ = −  (44) 
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