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Abstract 
 

Spectrum sensing (SS) is one of the fundamental tasks for cognitive radio. In SS, decisions can 
be made via comparing the test statistics with a threshold. Conventional adaptive algorithms 
for SS usually adjust their thresholds according to the radio environment. This paper 
concentrates on the issue of adaptive SS whose threshold is adjusted based on the Markovian 
behavior of primary user (PU). Moreover, Bayesian cost is adopted as the performance metric 
to achieve a trade-off between false alarm and missed detection probabilities. Two novel 
adaptive algorithms, including Markov Bayesian energy detection (MBED) algorithm and 
IMBED (improved MBED) algorithm, are proposed. Both algorithms model the behavior of 
PU as a two-state Markov process, with which their thresholds are adaptively adjusted 
according to the detection results at previous slots. Compared with the existing Bayesian 
energy detection (BED) algorithm, MBED algorithm can achieve lower Bayesian cost, 
especially in high signal-to-noise ratio (SNR) regime. Furthermore, it has the advantage of low 
computational complexity. IMBED algorithm is proposed to alleviate the side effects of 
detection errors at previous slots. It can reduce Bayesian cost more significantly and in a wider 
SNR region. Simulation results are provided to illustrate the effectiveness and efficiencies of 
both algorithms. 
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1. Introduction 

In recent years, with the development of wireless communications technologies, most 
spectrum bands have been allocated for specific use, and the spectrum resource is on the verge 
of extinction. However, many researchers found that significant amount of spectrum remains 
underutilized, or even completely idle [1-2]. Coined by Mitola [3], cognitive radio (CR) was 
proposed as a promising solution to this paradox via recycling the underutilized spectrum 
bands. 

In a CR system, primary user (PU) is the licensed user who has priority to use the spectrum 
band, and secondary user (SU) is the unlicensed user who monitors the usage of spectrum band 
and opportunistically accesses the unutilized band without causing interference to PU [4]. To 
achieve this goal, SU should continuously and reliably sense whether the spectrum band is 
occupied by PU. There are several classical spectrum sensing (SS) methods, such as matched 
filter detection [5], cyclostationary feature detection [6] and energy detection (ED) [7]. 
Among them, ED is the simplest and the most popular SS mechanism since it does not require 
prior information about PU signals [8-9]. In [10-12], some cooperative PU detection 
approaches are suggested to exploit the diversity of multiple SUs. 

Performance of SS is usually evaluated in terms of the false alarm probability and the 
missed detection probability.  The former denotes the probability with which the absence state 
of PU is detected as presence, and the latter is the probability with which the presence state of 
PU is regarded as absence [13]. In ED, PU’s state is decided by comparing the received energy 
with a predetermined threshold [14]. Consequently, how to determine a threshold is of great 
importance. The threshold can be chosen under a constant detection rate (CDR) criterion to 
ensure sufficient protection to PU. But when the signal to interference plus noise ratio (SINR) 
is larger, the blind use of CDR criterion probably incurs over-protection of PU and a high false 
alarm probability. In [13], an interference-aware approach was proposed to select threshold 
according to the distance between secondary transmitter and primary receiver. In order to 
enhance the sensing accuracy and robustness, reference [15] designed an adaptive threshold 
architecture, whose sensing component employed two SS techniques and machine learning 
component dynamically adopted the threshold based on the lowest Bayesian risk. Considering 
the coexistence of PU and SU signals, reference [16] adaptively changed its threshold 
according to the transmission power of SU to guarantee the minimum decodable SINR for 
primary receiver. In [17] and [18], the threshold was formulated as a linear increasing function 
of the instantaneous SINR. By means of estimating the noise power and signal power, 
reference [19] dynamically adapted its threshold based on the noise fluctuation, and derived an 
optimal threshold in function of the weighted error probability. Via minimizing the total error 
decision probability at different spectrum utilizations of PU, reference [20] proposed an 
adaptive threshold algorithm to achieve an efficient trade-off between the detection and false 
alarm probabilities.  

Besides the adaptive SS methods listed above, some research work utilized the 
characteristic of PU’s behavior to aid SS. The M-slot temporal persistence that PU maintains 
the same state for at least M slots was considered to improve the sensing accuracy [21]. 
Similarly, Zhao discussed the Markovian behavior of PU and a partially observable decision 
framework to maximize the throughput of CR system [22]. In [23], the authors proposed some 
cognitive medium access control (MAC) protocols to optimize the performance of SUs based 
on a partially observable Markov decision process framework. In order to predict the behavior 
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of PU more accurately, actual measurements in the 2.4GHz industrial, scientific and medical 
(ISM) band with a vector signal analyzer were performed, indicating a continuous-time 
semi-Markov model [24]. The sojourn time of this model was also characterized, and the 
channel was categorized by five different states [25]. In order to simplify the semi-Markov 
model, Zhao considered a myopic policy to maximize the immediate reward and ignore the 
impact of current state on the future reward. When the channels are independently and 
identically distributed (i.i.d.), the myopic sensing policy has a simple and robust structure, and 
the model can be regarded as a two-state process [26].  

Although the existing adaptive SS methods are able to improve sensing performance, they 
adjust their thresholds according to the wireless environment [16-19], such as signal power or 
noise level, which not only requires environmental parameter estimation but also suffers from 
estimation errors. On the other hand, despite the existence of research efforts on the behavior 
of PU, the temporal persistence model in [21] is not widely followed by other researchers, and 
the popular Markov models are mainly utilized to enhance system throughputs [22-23, 26], 
while their benefits to other performance metrics have not been fully investigated.  

This paper focuses on the Markovian behavior of PU, and utilizes this characteristic to 
achieve an efficient trade-off between false alarm and missed detection probabilities. Some 
adaptive threshold algorithms are consequently proposed. Unlike the existing methods that 
adaptively adjust thresholds according to the wireless environment, our algorithms make 
adjustment based on the behavior of PU. Our work is also different from previous research on 
the behavior of PU because we use a two-state Markov model to reduce the total cost of false 
alarm and missed detection instead of increasing system throughputs.  

Two algorithms, namely Markov Bayesian energy detection (MBED) and improved 
MBED (IMBED), are consequently proposed. Both algorithms exploit the behavior of PU to 
reduce the total cost of detection errors. In MBED algorithm, the threshold is chosen from two 
possibilities according to previous detection results. In IMBED algorithm, the threshold is 
recalculated based on the posterior probabilities of previous detection.  

The remainder of this paper is organized as follows: System model and conventional ED 
method are described in Section 2. In Section 3, optimal threshold for Bayesian energy 
detection (BED) algorithm is re-derived, the benefit of Markov model is analyzed, and the 
MBED algorithm is proposed. Section 4 presents the IMBED algorithm to alleviate the side 
effect of detection errors. Simulation results are provided in section 5 and conclusions are 
drawn in section 6. 

2. System Model 
Consider that the behavior of PU can be described as a two-state discrete-time Markov 

Model with the transition probability q and p [26], as shown in Fig. 1. Detailedly, q is the 
probability with which the state of PU changes from absence to presence, and p is that from 
presence to absence. Then, the prior probabilities of PU’s presence (i.e., 1P ) and absence (i.e., 

0P ) are given by [17, 18] 
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p
0H 1H  

Fig. 1. Markov model of PU’s behavior 
 

Without loss of generality, a slotted CR system consisting of one PU and one SU is 
considered in this paper. SU performs ED at each slot to continuously sense the state of PU, 
which can be regarded as a binary hypothesis problem as follows, 
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where ( )iy k  is the signal received by SU at the i th slot; ( )in k  denotes the additive white 
Gaussian noise (AWGN) at the i th slot with zero mean and variance of 2

nσ ; ( )is k  is the PU 
signal at the i th slot and assumed to be i.i.d. with zero mean and variance of 2

sσ ; 0H  and 1H   
denote the hypotheses of PU’s absence and presence, respectively. As a result, the received 
energy at the i th slot can be calculated as 
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where M  means the number of samples in each observation window. 

Comparing iv  with a predetermined threshold λ , the state of PU at the i th slot can be 
determined as follows, 
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Since M  is usually very large, iv  approximately obeys Gaussian distribution according to 

the center limit theorem (CLT) [27, 28]. Assume that its mean and variance under 0H  are 0m  
and 2

0σ , and that its mean and variance under 1H  are 1m  and 2
1σ , respectively. Then the 

distribution of iv  is given by 
 

( )
( )

2
0 0 0

2
1 1 1

,   
~ .

,   
i

N m H
v

N m H

σ

σ





                                                        (5) 

 
Based on (5), the false alarm probability fP  and missed detection probability mP  yield to 
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where 0( | )if v H  and 1( | )if v H  are the probability density functions of iv  under hypotheses 

0H  and 1H , respectively; 2 2( ) 1 2 t

x
Q x e dtπ

∞ −= ∫  is the Q  function.  

3. MBED Algorithm 
In SS, both false alarm probability and missed detection probability are important. Low false 
alarm probability is required to guarantee the throughput of CR, and low missed detection 
probability is needed to ensure the tolerable interference to PU [29]. Unfortunately, these two 
goals usually contradict with each other. This section firstly re-deduces the threshold of BED 
algorithm, and then discusses a new algorithm that exploits the Markov model in Fig. 1 to 
reduce the total cost of false alarm and missed detection. 

3.1 Threshold of BED Algorithm 
BED algorithm jointly considers false alarm and missed detection probabilities, and uses the 
Bayesian cost as its performance metric. The definition of Bayesian cost can be expressed as 
[30] 

 
0 1 ,f f m mJ I P P I PP+                                                     (8) 

 
where fI  and mI  are the impact factors of false alarm and missed detection, respectively. 
Both fI  and mI  should be positive. 

Taking the first-order partial derivative of (8), the threshold of BED algorithm is given by 
[21] 
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where 2 2 2 2
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3.2 Actual Probabilities 
This paper concentrates on the Markovian behavior of PU, as depicted in Fig. 1. According to 
this characteristic, if the state of PU at the previous slot is explicitly known, the probabilities of 
PU’s state at the current slot can be inferred. More specifically, when the actual state at the 
previous slot is absence, the actual probabilities of PU’s state at the current slot yield to 
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When the actual state at the previous slot is presence, the actual probabilities of PU’s state at 
the current slot are 
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Intuitively, the actual probabilities in (11) and (12) are more precise than the prior 

probabilities in (1). Therefore, we may use the former to replace the latter in (9). Then the 
threshold can be rewritten as 
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where 0λ  and 1λ  denote the threshold of current slot when PU’s state at the previous slot is 

0H  and 1H , respectively. 
Based on these two thresholds, the performance of SS can be rewritten as 
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(17) 
 

Without loss of generality, we consider the scenario with equal prior probabilities (namely 
p q= ), and then obtain following proposition. 

 
Proposition 1: The Bayesian cost in (17) is symmetric with respect to the transition 

probability of 1/2, and reaches the extremum when the transition probability is 1/2. 
Proof: The proof of Proposition 1 is given in Appendix A. 

 
Note that when the transition probability is 1/2 ( 1 2q = ), we have 0 1 Bλ λ λ= = , and thus the 

Bayesian cost in (17) is equal to that in (8). When 1 2q ≠ , the Bayesian cost in (17) is certainly 
superior. Moreover, if the transition probability is further away from 1/2, the superiority of 
(17) is more significant.  
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3.3 Description of MBED algorithm 

As illustrated above, if the state of PU at the previous slot is explicitly known, we can choose 
0λ  or 1λ  as the threshold accordingly. However, the actual state of PU cannot be obtained in 

real scenarios. MBED algorithm is proposed to conquer this problem. 
Since the detection at the previous slot has been completed, we have a detection result. This 

result is a measurement of the actual state although it might be erroneous. In MBED algorithm, 
we use the detection result instead of the actual state. If the detection result is 0H , we believe 
that the actual state of the previous slot is 0H , and choose 0λ  as the threshold at the current 
slot; otherwise, we choose 1λ . 

The detailed steps of MBED algorithm are listed in Algorithm 1. 
 

Algorithm 1    MBED algorithm 
Step 1: Initialization. Calculate 0λ  and 1λ  based on (13) and (14). Perform BED at the first 

slot. 2i = .   
Step 2: If the detection result at the ( 1i − )th slot is 0H , 0λ λ= . Otherwise, 1λ λ= . 
Step 3: Utilize (3) to measure the received energy iv . 
Step 4: Compare iv  with λ  and make a decision. 
Step 5: 1i i= + , go back to Step 2. 
 
Note that although MBED algorithm updates its threshold at each slot, the new threshold 

does not need to be calculated. According to Step 2, this algorithm chooses either 0λ  or 1λ , 
which is obtained at the initialization step. Therefore, it has lower computational complexity 
compared with other adaptive methods and is more suitable for the real-time SS scenarios in 
which less calculation time is required.  

Furthermore, since this algorithm choose threshold according to detection results, it can 
improve the performance of SS if detection results are reliable, e.g. in high signal-to-noise 
ratio (SNR) regions. When SNR is high, its false alarm probability, missed detection 
probability and Bayesian cost can be approximated by (15), (16) and (17), respectively. 

4. IMBED Algorithm 

MBED algorithm works well if SNR is high. However, when SNR is low, it suffers from great 
performance degradation because the detection results are probably erroneous. This section 
proposes an IMBED algorithm to improve the sensing performance in low SNR regions by 
avoiding adjusting the threshold according to detection results directly. 

When implementing SS at the previous slot, we can not only obtain a detection result but 
also calculate the posterior probability of ( )0,1xH x = , 
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Based on the Markov model in Fig. 1, the probability that PU is absent or present at the 

current slot can be predicted as 
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If prediction probabilities 0 ( )predP i  and 1 ( )predP i  are more accurate than prior probabilities 0P  

and 1P , we may utilize them in (9) to obtain an even better threshold [21]. 
Assuming the equal prior probabilities again, we have following proposition. 

 
Proposition 2: Providing the false alarm and missed detection probabilities at the previous 

slot are fP  and mP , respectively. (i) if 1 2q = , prediction probabilities are equal to prior 
probabilities; (ii) otherwise, prediction probabilities are more accurate than prior probabilities 
when 1 2fP <  and 1 2mP < . 

Proof: The proof of Proposition 2 is given in Appendix B. 
 

Since both 1 2fP <  and 1 2mP <  can be easily satisfied in practical scenarios, prediction 
probabilities are not worse than prior probabilities. Using the former to replace the latter in (9), 
a better instantaneous threshold at the i th slot is obtained as 
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IMBED algorithm is proposed based on the instantaneous threshold above. It first calculates 

the posterior probabilities at the previous slot, and then predicts the probabilities of PU’s states 
at the current slot. With the prediction probabilities, it re-calculates the threshold of current 
slot and makes a decision. The detailed steps of IMBED algorithm can be found in Algorithm 
2. 
 

Algorithm 2    IMBED algorithm 
Step 1: Initialization. Perform BED at the first slot and utilize (18) to calculate the posterior 

probabilities 0 (1)postP  and 1 (1)postP ; 2i = . 
Step 2: Calculate the posterior probabilities 0 ( 1)postP i −  and 1 ( 1)postP i −  based on (18). 
Step 3: Obtain the prediction probabilities 0 ( )predP i  and 1 ( )predP i  by (19). 
Step 4: Derive the instantaneous threshold ( )I iλ  according to (20). 
Step 5: Measure the received energy iv  using (3). 
Step 6: Compare iv  with ( )I iλ  and make a decision. 
Step 7: 1i i= + , go back to Step 2. 
 
Based on Proposition 2, the sensing performance of IMBED algorithm can be described as 

follows: (i) when 1/ 2q =  , both IMBED and BED algorithms have the same performance; 
(ii) when 1/ 2q ≠  , the performance of IMBED algorithm is certainly better when 1/ 2fP <   

and 1/ 2mP <  . 
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Computational complexity of different algorithms is listed in Table 1. 
 
 

Table 1. Computational complexity of different algorithms 

Algorithm Threshold Expression
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When to 
Calculate

Computational 
Complexity

once in 
Initialization

very low

once in 
Initialization low

every time
in each detection high

BED

MBED

IMBED

 

 

5. Simulation Results 

In this section, we assume the noise has unit power ( 2 1nσ = ). Therefore, 0m M= , 
1 (1 )m M γ= + , 2

0 2Mσ = , 2
1 2 (1 2 )Mσ γ= + , where 2

sγ σ=  is the SNR. Moreover, we consider 
equal priori probabilities ( 0 1P P= ), and thus p q= . In our simulations, Monte Carlo tests are 
executed 100000 times, 600M = , and 2f mI I+ = . ED algorithm derives its threshold based 
on the constant false alarm probability of 0.1, named constant false-alarm ED (CFED). 

Fig. 2 plots the Bayesian cost versus transition probability for 1fI =  and SNR=−10dB. As 
shown in this figure, transition probability does not affect CFED and BED algorithms because 
they do not make use of the Markov model. Compared with them, MBED algorithm has lower 
Bayesian cost, and IMBED algorithm has the lowest Bayesian cost. Note that their Bayesian 
cost curves are convex and symmetric centered at the transition probability of 1/2, which 
agrees well with Proposition 1. Moreover, the further transition probability is away from 1/2, 
the less Bayesian cost is. That is, both MBED and IMBED algorithms are especially superior 
when PU has a clear tendency of either remaining or changing its state. This phenomenon can 
be explained as follows. Our algorithms improve sensing performance by inferring the 
probabilities of PU’s states and adjusting the threshold accordingly. If PU tends to be present, 
we decrease the threshold. On the contrary, if PU tends to be absent, we increase the threshold. 
However, when the transition probability approaches 1/2, PU will be present or absent equally, 
and our algorithms make little adjustment on the threshold. 
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Fig. 2. Bayesian cost against transition probability 
 
 

In order to investigate the Bayesian cost versus SNR, different transition probabilities are 
considered: (1) for 1 2q < , we choose 0.1q =  and 0.2; (2) for 1 2q > , we choose 0.8q =  
and 0.9; (3) 1 2q = . 

Fig. 3 and Fig. 4 demonstrate the curves of Bayesian cost versus SNR for 1fI =  with 
transition probabilities 0.1,0.9q =  and 0.2,0.8q = , respectively. According to these figures, 
the Bayesian cost curves of MBED and IMBED algorithms are almost the same when 0.1q =  
and 0.9, also when 0.2q =  and 0.8, which is consistent with Proposition 1. Note that when 
SNR is high, MBED algorithm is better than conventional algorithms. However, its Bayesian 
cost is worse than that of BED algorithm if SNR is below −10dB, and even worse than that of 
CFED algorithm if SNR is below −11dB. This may be explained by the facts that the threshold 
of MBED algorithm depends on detection results, and there are too many errors in detection 
results when SNR is very low. It can also be seen from these figures that, IMBED algorithm is 
always superior to all other algorithms, even in low SNR regions. This phenomenon indicates 
that IMBED algorithm is robust to low SNR and detection errors.  For example, in Fig. 3, BED 
algorithm achieves Bayesian cost of 0.3 at about SNR=−12dB, while IMBED algorithm 
obtains the same performance at SNR=−14dB. As much as 2dB gain can be achieved by use of 
IMBED algorithm. 
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Fig. 3. Bayesian cost against SNR with 0.1q =  and 0.9 
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Fig. 4. Bayesian cost against SNR with 0.2q =  and 0.8 
 

In Fig. 5, the case of 1 2q =  is investigated. As shown in this figure, Bayesian cost of 
CFED algorithm is highest, and all other curves overlap each other, which means BED, 
MBED and IMBED algorithms have the same performance. The reason is that, when 1 2q = , 
there is no potential information about the behavior of PU according to the Markov model, and 
the thresholds of these algorithms are identical. 

Finally, different impacts of false alarm and missed detection are studied. The scenario with 
SNR=−10dB and transition probability 0.1q =  is taken for example in Fig. 6. Because of not 
considering the impacts of false alarm and missed detection, Bayesian cost of CFED algorithm 
keeps increasing dramatically as m fI I  increases. BED algorithm is better than CFED 
algorithm as its threshold is related to m fI I . Compared with BED algorithm, Bayesian cost 
of MBED algorithm is lower in most regions, but is higher when m fI I  is very large. It is 
because SU should be extremely conservative and excessively protect PU from interference 
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under this circumstance, resulting in too many false alarm errors [31]. Again, Bayesian cost of 
IMBED algorithm is the lowest, indicating the superiority of this algorithm. 
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Fig. 5. Bayesian cost against SNR with  1 2q =  
 

10 -1 10 0 10 1

I
m

/I
f

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ba
ye

si
an

 C
os

t

M=600,SNR=-10dB,q=0.1,p=0.1

CFED.P
f
=0.1

BED

MBED

IMBED

 

Fig. 6. Bayesian cost against impact of false alarm and missed detection 
 

6. Conclusion 

This paper has exploited the Markovian behavior of PU to reduce the Bayesian cost of false 
alarm and missed detection in SS. Two novel adaptive threshold algorithms, including MBED 
and IMBED, are proposed. MBED algorithm chooses either 0λ  or 1λ  as its threshold at each 
slot according to the detection result of previous slot. It has low computational complexity and 
is superior to BED algorithm in high SNR regions. IMBED algorithm re-calculates an 
instantaneous threshold at each slot based on the posterior probabilities of previous slot. It is 
able to reduce Bayesian cost more significantly and in a wider SNR region. The conditions 
under which IMBED algorithm is certainly better than BED algorithm are deduced. Both 
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theories and simulation results show that larger performance improvement can be achieved if 
transition probabilities are further away from 1/2. Based on these two algorithms, higher 
detection accuracy of TV white spaces can be achieved by exploiting the Markovian behavior 
of TV broadcasters, which is of key importance to improve the efficiency of TV bands. In the 
future, the estimation errors of some parameters, such as SNR and transition probabilities, can 
be investigated. 

Appendix A: Proof of Proposition 1 

Feeding 0 1P P=  into (1), p q=  is obtained. Consequently, (13), (14) and (17) can be rewritten 
as 
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Obviously, 0 1 1 0( ) (1 ), ( ) (1 )q q q qλ λ λ λ= − = − . Hence, 
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Thus, this Bayesian cost is symmetric with the transition probability of 1/2. 

Taking the first-order partial derivative of ( )J q  with respect to q , we get  
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where 0 1/ ( ), / ( ).D B A E B Aλ λ= − = −  
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It’s obvious that ( 1/2)| 0qJ q =∂ ∂ = . Combining with the symmetry, it reaches the extremum 
when 1 2q = . 

Appendix B: Proof of Proposition 2 

In order to compare the accuracy of prior probabilities with that of prediction probabilities, xα  
is defined as the gap between prior probabilities and actual probabilities at the current slot 
when the previous state is xH , and xβ  is defined as the gap between prediction probabilities 
and actual probabilities at the current slot when the previous state is xH , where 0,1x = . 
Obviously, the smaller gap is, the more accurate probabilities are. 

When the previous state is 0H  (PU is absent at the previous slot), the actual probability of 
1H  at the current slot is q  according to Fig. 1. Moreover, since the false alarm probability at 

the previous slot is fP , prediction probabilities can be written as 
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Considering 0 1P P=  and thus p q= , the gaps can be derived as follows, 
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       0 (1 ) (1 ) (1 2 ) .f f fq P p P q P qβ = − + − − = −                                (28) 

 
So, if 1 2q = , we have 0 0β α= ; otherwise, we have 0 0β α<  on condition of 1 2fP < . 
Similarly, when the previous state is 1H  (PU is present at the previous slot), prediction 

probabilities can be derived as 
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and the gaps are given by 
 

                    1
1 1 (1 2 ) ,
2 2

p qα = − = −                                             (30) 

 
     1 (1 ) (1 ) (1 2 ) .m m mq P p P p P qβ = − + − − = −                              (31) 

 
Obviously, 1β  equals to 1α  on condition of 1 2q = , and 1β  is smaller than 1α  on condition 

of 1 2mP < , 1 / 2q ≠ . 
Consequently, if 1 2q = , prediction probabilities are certainly equal to prior probabilities; 

otherwise, prediction probabilities are more accurate than prior probabilities when 1 2fP <  
and 1 2mP < . 
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