• Title/Summary/Keyword: Low voltage surge

Search Result 115, Processing Time 0.024 seconds

Design and Behavior of Validating Surge Protective Devices in Extra-low Voltage DC Power Lines (특별저전압 직류 전원회로에 유용한 서지방호장치의 설계와 특성)

  • Shim, Seo-Hyun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.81-87
    • /
    • 2015
  • In order to effectively protect electrical and electronic circuits which are extremely susceptible to lightning surges, multi-stage surge protection circuits are required. This paper presents the operational characteristics of the two-stage hybrid surge protection circuit in extra-low voltage DC power lines. The hybrid surge protective device consists of the gas discharge tube, transient voltage suppressor, and series inductor. The response characteristics of the proposed hybrid surge protective device to combination waves were investigated. As a result, the proposed two-stage surge protective device to combination wave provides the tight clamping level of less than 50V. The firing of the gas discharge tube to lightning surges depends on the de-coupling inductance and the rate-of-change of the current flowing through the transient voltage suppressor. The coordination between the upstream and downstream components of the hybrid surge protective device was satisfactorily achieved. The inductance of a de-coupler in surge protective circuits for low-voltage DC power lines, relative to a resistance, is sufficiently effective. The voltage drop and power loss due to the proposed surge protective device are ignored during normal operation of the systems.

A Study on the Design of Discharge Voltage of Discharge Element with Control Electrode (제어전극을 갖는 방전소자의 방전개시전압 설계에 관한 연구)

  • Park, Keun-Seok;Choi, Jun-Woong;Lee, Dae-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1512-1516
    • /
    • 2018
  • The power system and control system constantly reveals surge voltage such as switching surge of lighting devices and power conversion devices, operating and stops surge of rotating devices, charge & discharge surge, opening & closing surge of circuit breakers and the like. Such a surge voltages can cause damage or malfunction of the element such as CPU, Memory, semiconductor etc. In the industry, in order to protect the system from the surge voltage, a surge protector with low discharge starting voltage, fast response time, and low capacitance is required, and technical development research for that is ongoing. In this paper, in order to solve the problem of the existing GDT discharge tube not discharging from the transient voltage which is higher than the commercial voltage and lower than the discharge voltage of the discharge element, we have developed a discharge element having the control electrode & control circuit. The discharge element having the control electrode and the control circuit can control the discharge voltage according to the needs of the consumer and can satisfy the requirement of the discharge element and the technology of the surge protector downsizing technology and the surge protection technology. It is judged to be effective for development.

Improvement Plans of Railway standards for Surge Protective Devices used in Low-voltage Power circuits (저전압 전원용 서지보호장치 철도 규격의 개선방안)

  • 정용철;김언석;이재호;조봉관;김재철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.90-97
    • /
    • 2002
  • In this paper we study the performance test items and improvement plans of surge protective devices for low-voltage power circuits used in railway system. Above of all, the sources of electromagnetic interference in railway system are researched. And then we compared domestic railway standard with IEC and IEEE standards far the test items and methodologies of surge protective devices. Through the investigations, we found that the domestic standard is behind in the number of test items and methods on surge protective devices. As the countermeasures, we suggest removing component tests of surge protective devices, separating standards for power and signal standards, and using international surge waveform. In applying to domestic railway surge protective devices, surge limiting voltage measuring and surge endurance tests by international standard methods are good result.

Analysis of the Protective Distance of Low-Voltage Surge Protective Device(SPD) to Equipment (저압용 서지 보호 장치(SPD)의 보호 거리 해석)

  • Lee, Jung-Woo;Oh, Yong-Taek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.28-34
    • /
    • 2012
  • Installing surge protection devices for a low-voltage system is important to ensure the survival of electric or electronic devices and systems. If surge protection devices (SPD) are installed without consideration of the concept of lightning protection zones, the equipment to be protected might be damaged despite the correct energy coordination of SPDs. This damage is induced by the reflection phenomena on the cable connecting an external SPD and the load protected. These reflection phenomena depend on the characteristics of the output of the external SPD, the input of the loads, and the cables between the load and the external SPD. Therefore, the SPD has an effective protection distance under the condition of the specific load and the specific voltage protection level of SPD. In this paper, PSCAD/EMTDC software is used to simulate the residual voltage characteristics of SPD Entering the low-voltage device. And by applying a certain voltage level, the effective protection distances of SPD were analyzed according to the each load and length of connecting cable, and the effectiveness of SPD were verified.

Protection coordination between residual current device and surge protective devices in low-voltage consumer's installations (저압 수용가 설비에서 누전차단기와 서지방호장치 사이의 보호협조)

  • Lee, Bok-Hee;Kim, Hoe-Gu;Park, Hee-Yeoul;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.75-81
    • /
    • 2013
  • In this paper, protection coordination between residual current devices and surge protective devices in low-voltage consumer's distribution systems are presented. In the case that a surge protrctive device(SPD) is located on the load side of an residual current device(RCD), when the surge is injected from the source side of the RCD, most of injected surge currents are split into the RCD and the protection coordination between the SPD and RCD is improper, three of 6 specimens experience unintended operation due to test impulse currents. Also when the surges is injected from the load side, a lot of the surge currents is split into the SPD, but a half of test specimens causes nuisance trip. Coordination between SPD and RCD is not valid. When installing SPD, it is important to select SPD after due consideration of the protection voltage level of metal oxide varistor embedded in RCD. It is expected that the results obtained from this work could be useful to improve the protection effects of SPD in low-voltage distribution systems.

Characteristics of Lightning Overvoltages Coming in Low-Voltage Power Distribution Systems

  • Lee, Bok-Hee;Lee, Dong-Moon;Lee, Su-Bong;Jeong, Dong-Cheol;Lee, Jae-Bok;Myung, Sung-Ho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.3
    • /
    • pp.91-98
    • /
    • 2003
  • The importance of improving the quality of electric power is being strongly raised, owing to an increasing use of sensitive and small-sized electronic devices and systems. The transient over-voltages on low-voltage power distribution systems are induced by direct or indirect lightning return strokes. These can cause damage and/or malfunction of the utility systems for home automation, office automation, factory automation, medical automation, etc. The behaviors of lightning overvoltages transferred through the transformer to the low-voltage distribution systems using a Marx generator were experimentally investigated. Furthermore, the coupling mechanisms of lightning overvoltages transferred to the low-voltage systems were clearly illustrated through a theoretical simulation using a Pspice program. The overvoltages in low-voltage ac power systems are rarely limited by the application of the surge arrester to the primary side of the distribution transformer. A superior surge protection scheme is to install surge protection devices at the service entrance switchboard and/or at the load devices in TN power systems.

Insulation Evaluation of Low-voltage Induction Motors by Surge Voltages (서지전압에 의한 저압유도전동기의 절연평가)

  • Choi, Su-Yeon;Choi, Jae-Sung;Park, Dae-Won;Kil, Gyung-Suk;Song, Jae-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1892-1896
    • /
    • 2008
  • Inverter-fed induction motors (IFM) are prevalent in traction vehicles. However, the winding insulation of IFM is substantially more stressed than of line-powered motors by surge voltages. Consequently, the winding insulation of IFM should be estimated by surge voltages. Also, the weakness of coil insulation can be detected by the surge voltage test. This paper described the insulation evaluation of induction motors by application of surge voltages. A surge voltage generator with the maximum voltage of 5 kV and the selectable rise-time in ranges of $50\;ns\;{\sim}\;500\;ns$ was fabricated. In the experiment, we applied surge voltages into induction motors with the magnitude and the risetime according to IEEE 522. By the analysis of applied surge voltage and current waveforms, we could find difference between normal and defection windings.

  • PDF

Dynamic Behavior Analysis of Pole Transformer Primary by Secondary Surge (저압측 서지에 의한 주상변압기 고압권선 동특성 해석)

  • Jung, Jong-Wook;Song, Il-Keun;Kim, Sang-Joon;Jang, Duck-Geun;Kwak, Hee-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1745-1747
    • /
    • 2002
  • This paper describes the effect of secondary surges entering low voltage side on the primary winding of pole transformers. After having connected the secondary winding by 4 different methods, surge voltages were applied to the low voltage side, and voltage waveforms were measured at a surge applied point and a high voltage bushing terminal. The measured voltages were compared by the waveform, magnitude and damping characteristics with each connection. As a result, the voltage waveforms induced by the secondary surges were different one another with each connection, especially, the conventional connecting method for 2 voltage sources was far different from the present method supplying only 1 voltage source in shape of the voltage waveform.

  • PDF

The Sugge Voltage restraint of induction motor using low-loss snubber circuit (저손실 스너버 회로를 이용한 유도전동기의 서지전압 억제)

  • Cho, Man-Chul;Mun, Sang-Pil;Kim, Chil-Yong;Kim, Ju-Yong;Shu, Ki-Young;Kwon, Soon-Kurl
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.473-477
    • /
    • 2007
  • The development of advanced Insulated Gate Bipolar Transistor(IGBT)has enabled high-frequency switching operation and has improved the performance of PWM inverters for motor drive. However, the high rate of dv/dt of IGBT has adverse effects on motor insulation stress. In many motor drive applications, the inverter and motor are separated and it requires long motor feds. The long cable contributes high frequency ringing at the motor terminal and it results in hight surge voltage which stresses the motor insulation. The inverter output filter and RDC snubber are conventional method which can reduce the surge voltage. In this paper, we propose the new low loss snubber to reduce the motor terminal surge voltage. The snubber consists of the series connection of charging/discharging capacitor and the voltage-clamped capacitor. At IGBT turn-off, the snubber starts to operate when the IGBT voltage reaches the voltage-clamped level. Since dv/dt is decreased by snubber operating, the peak level of the surge voltage can be reduced. Also the snubber operates at the IGBT voltage above the voltage-clamped level, the snubber loss is largely reduced comparing with RDC snubber. The proposed snubber enables to reduce the motor terminal surge voltage with low loss.

  • PDF

Propagation Aspect of Lightning Surge According to The Arrangement of Indoor wire (옥내배선 배치에 따른 서지 전파양상)

  • Lee, Suck-Woo;Whang, Kyu-Hyun;Seo, Ho-Joon;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.658-661
    • /
    • 2004
  • Lightning surge damages of low voltage equipments in building are increasing due to increase in electrical and communication networks in the information-oriented society And electrical circuits with semiconductor are very weak against lightning surge. To achieve effective method of surge protection on low voltage lines, there are needs for the relationship between propagation aspects of lightning surge and arrangement of indoor wire. This paper describes the experimental study on the relationship between them. This result may be raw data for establishment of surge protection system.

  • PDF