• Title/Summary/Keyword: Low switching energy

Search Result 250, Processing Time 0.022 seconds

Characteristics of RC circuit with Transistor in Micro-EDM (트랜지스터 부착 RC 방전회로의 마이크로 방전가공 특성)

  • 조필주;이상민;최덕기;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • In micro-EBM, it is well blown that RC circuit is suitable for discharge circuit because of its low pulse width and relatively high peak current. To increase machining speed without changing unit discharge energy, charge resistance should be decreased. But, if very low, continuous (or normal) arc discharge occurs, then increases electrode wear and reduces machining speed remarkably. In this paper, RC circuit with transistor is used to micro-EDM. Experimental results show that RC circuit with transistor can cut off continuous (or normal) arc discharge effectively if duty factor and switching period of transistor are set up optimally. Through experiments with varying charge resistance, it can be known that RC circuit with transistor has about two times faster machining speed than that of RC circuit. Especially, it has prominent rise-effect of machining speed in low unit discharge energy, so that a high-quality and high-speed micro-EDM can be realized through RC circuit with transistor.

  • PDF

A Study on Accuracy Detection Method for Signal Peak Voltage (신호용 PEAK 전압 정밀검출에 관한 연구)

  • Park, Ho-Chul;Sung, Hyung-Su;Han, Seung-Moon;Han, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2528-2530
    • /
    • 2000
  • In general, Diode makes a major role in electronic circuit. For example, switching of rectifier, cross current of switching rectifier, energy transfer of electronic element and reverse charge of capacitor, voltage insulation, energy feedback from load to power supply, and such as recovery of storaged energy. Generally, We regard power diode as ideal element, but it has a certain boundary actually, specially, We use diode for detecting circuit peak hold voltage signal. It has cut in voltage. It occurs error of measurement value namely. This error, below in region diode voltage drop (0.7v) measurement value is wholesome signal, Specially, We can not get precision data. Therefore, precision level is low between theoretical and measurement data because of error in actual circuit. Conclusionally, In this paper, We define the error concerning to the power diode characteristics which is used detecting of the minute signal, and recommend the method that minimize measurement error.

  • PDF

Development of 12V, 1000A Isolated Bidirectional Resonant DC-DC Converter (12V, 1000A 절연형 양방향 공진형 DC-DC 컨버터 개발)

  • Park, Jun-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • In this paper a bidirectional DC-DC converter is proposed for renewable energy systems, eco-friendly vehicles, energy storage systems, uninterruptible power supply(UPS) systems and battery test equipments. The two-stage bidirectional converter employing a fixed-frequency series loaded resonant converter is designed to be capable of operating under zero-current-switching turn on and turn off regardless of voltage and load variation, and hence its magnetic components and EMI filters can be optimized. And efficiencies and volumes of the two-stage bidirectional converters are compared according to configuration of isolated and non-isolated parts and a two-stage topology suitable for low voltage and high current applications is proposed. A 12kW(12V, 1000A) prototype of the proposed converter has been built and tested to verify the validity of the proposed operation.

Study on Multi-switching Sensor-based LED Lighting Control Technology (멀티스위칭 센서기반 LED 조명제어기술에 관한 연구)

  • Jang, Tae-Su;Hong, Geun-Bin;Lee, Dae-Hyoung;Kim, Yong-Kab;Kim, Byun-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.813-814
    • /
    • 2012
  • Recently, along with a development to promote low-carbon green growth, LED control IT convergence technology that can create environmentally-friendly emotional lighting is receiving attention. This is an interface control technology that includes a multi-sensor, switching technology, LED optics, and Internet-based remote lighting control, all of which utilize the lighting characteristics of LED lighting. The proposed system is a study on an intelligent LED control technology, and aims to use a multi-switching sensor in order to control LED discharge current so as to improve energy-charging method, to use a battery's SoC sensor, and to improve efficiency in the winter according to a section.

  • PDF

Characteristic Analysis of Flyback Type ZVS PWM DC-DC Converter Using Passive Resonant Snubber (패시브 공진 스너버를 이용한 플라이백형 ZVS PWM DC-DC 컨버터의 특성해석)

  • Kim, Jung-Do;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.158-164
    • /
    • 2016
  • In this paper, a high frequency flyback type zero voltage soft switching PWM DC-DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of active power switches and a flyback high frequency transformer. In addition to these, passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three winding auxiliary high frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC-DC converter from an experimental point of view and the comparative electromagnetic conduction and radiation noise characteristics of both DC-DC power converter circuits are also depicted.

Analysis and Implementation of a New Single Switch, High Voltage Gain DC-DC Converter with a Wide CCM Operation Range and Reduced Components Voltage Stress

  • Honarjoo, Babak;Madani, Seyed M.;Niroomand, Mehdi;Adib, Ehsan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 2018
  • This paper presents a single switch, high step-up, non-isolated dc-dc converter suitable for renewable energy applications. The proposed converter is composed of a coupled inductor, a passive clamp circuit, a switched capacitor and voltage lift circuits. The passive clamp recovers the leakage inductance energy of the coupled inductor and limits the voltage spike on the switch. The configuration of the passive clamp and switched capacitor circuit increases the voltage gain. A wide continuous conduction mode (CCM) operation range, a low turn ratio for the coupled inductor, low voltage stress on the switch, switch turn on under almost zero current switching (ZCS), low voltage stress on the diodes, leakage inductance energy recovery, high efficiency and a high voltage gain without a large duty cycle are the benefits of this converter. The steady state operation of the converter in the continuous conduction mode (CCM) and discontinuous conduction mode (DCM) is discussed and analyzed. A 200W prototype converter with a 28V input and a 380V output voltage is implemented and tested to verify the theoretical analysis.

Development of Adsorption Desalination System Utilizing Silica-gel (실리카겔을 이용한 흡착식 담수화 시스템 개발)

  • Hyun, Jun-Ho;Israr, Farrukh;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.364-369
    • /
    • 2012
  • The development of solar thermal energy used adsorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar thermal energy used and adsorption desalination system was introduced. Silica gel type adsorption desalination system is considered to be a promising low-temperature heat utilization system. The design is divided into three parts. First, the evaporator for the vaporization of the tap water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basic research, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar thermal energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. Desalination is processes that permeate our daily lives, but It requires substantial energy input, powered either from electricity or from thermal input. From the environmental and sustainability perspecives, innovative thermodynamic cycles are needed to produce the above-mentioned useful effects at a lower specific energy input. This article describes the development of adsorption cycles for the production of desalting effects. We want that this adsorption system can be driven by low temperature heat sources at 60 to $80^{\circ}C$, such as renewable, solar thermal energy.

  • PDF

Highly Efficient AC-DC Converter for Small Wind Power Generators

  • Ryu, Hyung-Min
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.188-193
    • /
    • 2011
  • A highly efficient AC-DC converter for small wind power generation systems using a brushless DC generator (BLDCG) is presented in this paper. The market standard AC-DC converter for a BLDCG consists of a three-phase diode rectifier and a boost DC-DC converter, which has an IGBT and a fast recovery diode (FRD). This kind of two-stage solution basically suffers from a large amount of conduction loss and the efficiency greatly decreases under a light load, or at a low current, because of the switching devices with a P-N junction. In order to overcome this low efficiency, especially at a low current, a three-phase bridgcless converter consisting of three upper side FRDs and three lower side Super Junction FETs is presented. In the overall operating speed region, including the cut-in speed, the efficiency of the proposed converter is improved by up to 99%. Such a remarkable result is validated and compared with conventional solutions by calculating the power loss based on I-V curves and the switching loss data of the adopted commercial switches and the current waveforms obtained through PSIM simulations.

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

The Output Characteristics of Low Repetition·High Power Nd:YAG Laser Using LLC Resonant Converter (LLC 공진형 컨버터를 활용한 저 반복·고출력 Nd:YAG 레이저의 출력특성)

  • Lee, Hee-Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.286-291
    • /
    • 2015
  • LLC resonant converter is used to control laser output power in Nd:YAG laser. Zero voltage switching (ZVS) is implemented to minimize the switching loss which is adopting the LLC resonant converter. In the spot welding processing of metal thin films, the processing quality is decided by the laser beam output energy of single pulse. We decide to the 50 [J] as the single pulse laser beam energy. Laser output power is investigated and experimented by changing the output current. That current is controled by the charging voltage of capacitor. From those results, we obtained the maximum laser output of 58.2 [J] and the conversion efficiency of 2.52% at the discharge voltage of 620V and the discharge current of 861 [A] and the pulse repetition rate of 1 [Hz] at the charging capacitor of 12,000 [${\mu}F$].