• Title/Summary/Keyword: Low speed vehicle

Search Result 449, Processing Time 0.025 seconds

Comparing Exhaust Gas Emission and PN in LPG and CNG Vehicle under FTP-75 and WLTC Test Mode (FTP-75, WLTC 시험 모드에서 LPG, CNG 자동차의 배출가스 및 PN 비교)

  • Jang, Jinyoung;Lee, Youngjae;Kwon, Ohseok;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.9-15
    • /
    • 2016
  • Liquefied petroleum gas (LPG) and compressed natural gas (CNG) are often used as fuel for vehicles because they are clean alternative gas fuels. CNG, as a low-carbon fuel, can contribute to the reduction of greenhouse gas emissions. LPG is often used as fuel for taxis because the performance is almost the same as that of gasoline but the price is lower. In the present study, the exhaust gas and the particle number (PN) of particulate matter, which is a recent environmental issue, were compared between LPG and CNG for the same vehicle. A chassis dynamometer was used to conduct the test according to the Federal Test Procedure (FTP)-75 and Worldwide harmonized Light-duty vehicle Test Procedure (WLTC) modes. The PN values of discharged particles having sizes of 5 nm or larger and 23 nm or larger were measured using two condensation particle counters (CPC). The ratio of carbon dioxide was high in the exhaust gas from the LPG vehicle; the ratio of methane was high in the exhaust gas from the CNG vehicle. The PN values of the emitted particles from the two fuels were similar. The PN values of particles having sizes of 23 nm or smaller were high in the high-speed WLTC mode.

Implementation and Performance Evaluation of a Precision Localizing Device for Hyperloop Pods Driving at Ulta-High Speeds (초고속주행 하이퍼루프 포드의 정밀 위치측정 장치 구현 및 성능평가)

  • Ok, Min-Hwan;Choi, Su-Yong;Choe, Jae-Heon;Lee, Kwan-Sup
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.443-451
    • /
    • 2020
  • A futuristic locomotion system called Hyperloop is projected for driving at ulta-high speed, levitated in the tube. In hyperloop localization of pods on the linear synchronous motor is essential for pod driving. precision localization is required for acceleration and deceleration of pods driving at speed above 1,000km/h, and also required for adjusting the pod speed driving at this very-high speed to maintain inter-vehicle distance. In this work, a new scale of localization is challenged by modified laser surface velocimeter. In acceleration the speed of a virtual pod is calculated along its displacement measured by laser reflection. Under the requirement of precise localization of the pod driving at ultra-high speed, a displacement measurement device, which detects the difference in reflections from tiles passing by the pod, is developed and evaluated through performance test. Tests of pod speeds below 500km/h have showed exact localization results of the precision in centimeters, and tests of pod speeds above 500km/h have showed localization with very low error rates under 0.1%. For the measurement above 500km/h, future works would pursue the error rate converges to zero.

Psychological effects on elderly driver's traffic accidents (고령운전자 교통사고의 심리적 요인)

  • Soonchul Lee
    • Korean Journal of Culture and Social Issue
    • /
    • v.12 no.5_spc
    • /
    • pp.149-167
    • /
    • 2006
  • Korean society is rapidly changing to aging society comparing the other industrialized countries, however, the studies of elderly driver's driving behavior and accidents are not enough in Korea for elderly driver's accident prevention. This study focused on the elderly driver's psychological effects on elderly driver's driving behavior and traffic accidents; carefulness and aberrant driving behavior. - Elderly driver's traffic accidents The high percentage of elderly driver's accidents occurs in intersections and when turning left. There was a significant difference of the opponent vehicle's speed when left turn, between elderly driver and young driver; the elderly driver choose the higher speed of opponent vehicle than young driver when left turning. This result means that elderly driver has some problems with deciding the vehicle's speed and gap acceptance(Sunyeol Lee, Soonchul Lee, and Inseok Kim, 2006)(Table 1). - Carefulness and driving confidence In order to understand elderly driver's carefulness, this study compared the elderly driver's driving confidence. Driving confidence was consisted of 4 factors; environment of traffic condition, safe driving, driving ability and attention. Elderly driver's confidence was lower than young driver's. Elderly driver in high driving confidence group, showed longer driving history and they were tend to commit violations more frequently than elerly driver in low driving confidence group. Young driver, whose driving confidence level was high answered more driving history, annual mileage, the frequency of committing traffic violation and the experience of accident within lats 5 years(Soonchul Lee, Juseok Oh, Sunjin Park, Soonyeol Lee and Inseok Kim, 2006)(Table 2). This study examined the total time required until deciding to turn left in the no traffic signal intersection between elderly driver and young driver. The result showed that the time of elderly driver was significant longer than young driver(Sunyeol Lee et al, 2006)(Table 3). - Elderly driver's aberrant behavior Driver behavior Questionnaire(DBQ) was measured to understand the aberrant behavior; violation, error and lapse. The tend of aberrant behavior was observed by aging(Sunjin Park, Soonchul Lee, Jonghoi, Kim and Inseok Kim, 2006). Elderly driver's DBQ score was lower than young driver's(Table 4). Elderly and young driver showing longer driving history were in low DBQ score group. Elderly driver had high error score and young driver had high violation score. Young driver's aberrant driving behaviour was associated with annual mileage and the frequency of committing traffic violation. Elderly driver's aberrant driving behaviour was associated with annual mileage and experience of accident. Especially elderly driver whose violation, error and lapse score was high answered more committing experience of accident within last 5 years.

Design and Implementation of adaptive traffic signal simulator system for U-Traffic (U-Traffic의 적응형 교통 신호 시뮬레이터 구축에 대한 연구)

  • Jang, Won-Tae;Kang, Woo-Suk
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.480-487
    • /
    • 2012
  • In Busan, the structural limitations of the road, is causing severe traffic congestion and low speed of the vehicle. So the existing traffic control system needs improvements to its structure. A study on Optimal Traffic Signal System and Improvement for User Oriented Public Transit Service are required. U-city is a city or region with ubiquitous information technology. All information systems are linked, and virtually everything is linked to an information technologies. U-Traffic goal is to maximize of traffic information services based on advanced information technology to integrate of transportation infrastructure. The objectives of this research are : a vehicle detection method through a variety of sensors, an algorithm of the traffic signal system, a design and implementation a simulator to compare between the fixed traffic signal and adaptive traffic signal system. This simulator will have allowed analysis techniques for the study of traffic control. Results of simulator test shows that traffic congestion can be some reduce.

A study on UAV (Unmanned Aerial Vehicle) Real Time Location Tracking Control Using Mobile Communication Network (이동통신망을 이용한 UAV(Unmanned Aerial Vehicle) 실시간 위치 추적 관제 방안에 관한 연구)

  • Choi, Hyun-Taek;Ryu, Gab-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.535-544
    • /
    • 2017
  • In this paper, to overcome the limitation of information transmission and reception according to the RF system of UAV, it is necessary to check the position of many UAVs in flight on the basis of mobile communication and to make the LTE modem lightweight and low power And UAVs that are in operation are received and controlled. Through this study, we proposed a method to control real-time location tracking by connecting high-resolution images to the network anytime and anywhere. For this purpose, we propose the requirements and requirements of LTE modem using real-time high-speed data communication technology (3G, 4G LTE, Bluetooth) by presenting the communication module system of LTE-based UAV. N:N control system concept and implementation technology(Control system structure, control data flow chart, flight planning and transmission, real-time location tracking).

Effectiveness Analysis for the Precision Guided and Controled Underwater Vehicle system with Integrated Navigation System (복합항법센서를 갖는 수중운동체의 정밀 유도제어 정확도 분석)

  • Han, Yongsu;Hyun, Chul;Jeong, Dongmin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2751-2757
    • /
    • 2015
  • To obtain the system requirement specification in the beginning of the precision guidance and control system development, the effectiveness and reliability analysis for the system are necessary. The main purpose of this research is to obtain the system requirement specification by carrying out the effectiveness analysis using the modeling and simulation(M&S) scheme. M&S model is constructed using 6-DOF dynamic model, environment model, guidanc -navigation & control model. Assume that the navigation sensor is consist of inertial navigation sensor(INS) and doppler velocity log(DVL), and the speed and direction of current is environment parameter. The effectiveness analysis is carried out using circular error probability(CEP) and variance analyze scheme. Also, the effectiveness analysis is utilized for cost-performance analysis considering the cost of commercial INS and DVL sensor. This paper shows the high-level INS and the low-level DVL configure a high price-performance integrated navigation system.

An Experimental Study on Characteristics of Engine Oil Diluted by a Bio-Alcohol Mixture Fuel (바이오알코올 혼합연료의 엔진오일 희석특성에 대한 실험적 연구)

  • Kim, HyunJun;Lee, HoKil;Oh, SeDoo;Kim, Shin
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.183-188
    • /
    • 2016
  • Engine oil plays an important role in the mechanical lubrication and cooling of a vehicle engine. Recently, engine development has focused on the adoption of gasoline direct injection (GDI) and turbocharging methodology to achieve high-power and high-speed performance. However, oil dilution is a problem for GDI engines. Oil dilution occurs owing to high-pressure fuel injection into the combustion chamber when the engine is cold. The chemical components of engine oil are currently developed to accommodate gasoline fuel; however, bio-alcohol mixtures have become a recent trend in fuel development. Bio-alcohol fuels are alternatives to fossil fuels that can reduce vehicle emissions levels and greenhouse gas pollution. Therefore, the chemical components of engine oil should be improved to accommodate bio-alcohol fuels. This study employs a 2.0 L turbo-gas direct injection (T-GDI) engine in an experiment that dilutes oil with fuel. The experiment utilizes a variety of fuels, including sub-octane gasoline fuel (E0) and a bio-alcohol fuel mixture (Ethanol E3~E7). The results show that the lowest amount of oil dilution occurs when using E3 fuel. Analyzing the diluted engine oil by measuring density and moisture with respect to kinematic viscosity shows that the lowest values of these parameters occur when testing E3 fuel. The reason is confirmed to influence the vapor pressure of the low concentration bio-alcohol-fuel mixture.

Structural noise mitigation for viaduct box girder using acoustic modal contribution analysis

  • Liu, Linya;Qin, Jialiang;Zhou, Yun-Lai;Xi, Rui;Peng, Siyuan
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.421-432
    • /
    • 2019
  • In high-speed railway (HSR) system, the structure-borne noise inside viaduct at low frequency has been extensively investigated for its mitigation as a research hotspot owing to its harm to the nearby residents. This study proposed a novel acoustic optimization method for declining the structure-borne noise in viaduct-like structures by separating the acoustic contribution of each structural component in the measured acoustic field. The structural vibration and related acoustic sourcing, propagation, and radiation characteristics for the viaduct box girder under passing vehicle loading are studied by incorporating Finite Element Method (FEM) with Modal Acoustic Vector (MAV) analysis. Based on the Modal Acoustic Transfer Vector (MATV), the structural vibration mode that contributes maximum to the structure-borne noise shall be hereinafter filtered for the acoustic radiation. With vibration mode shapes, the locations of maximum amplitudes for being ribbed to mitigate the structure-borne noise are then obtained, and the structure-borne noise mitigation performance shall be eventually analyzed regarding to the ribbing conduction. The results demonstrate that the structural vibration and structure-borne noise of the viaduct box girder mainly occupy both in the range within 100 Hz, and the dominant frequency bands both are [31.5, 80] Hz. The peak frequency for the structure-borne noise of the viaduct box girder is mainly caused by $16^{th}$ and $62^{th}$ vibration modes; these two mode shapes mainly reflect the local vibration of the wing plate and top plate. By introducing web plate at the maximum amplitude of main mode shapes that contribute most to the acoustic modal contribution factors, the acoustic pressure peaks at the field-testing points are hereinafter obviously declined, this implies that the structure-borne noise mitigation performance is relatively promising for the viaduct.

Traffic control technologies without interruption for component replacement of long-span bridges using microsimulation and site-specific data

  • Zhou, Junyong;Shi, Xuefei;Zhang, Liwen;Sun, Zuo
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.169-178
    • /
    • 2019
  • The replacement of damaged components is an important task for long-span bridges. Conventional strategy for component replacement is to close the bridge to traffic, so that the influence of the surrounding environment is reduced to a minimum extent. However, complete traffic interruption would bring substantial economic losses and negative social influence nowadays. This paper investigates traffic control technologies without interruption for component replacement of long-span bridges. A numerical procedure of traffic control technologies is proposed incorporating traffic microsimulation and site-specific data, which is then implemented through a case study of cable replacement of a long-span cable-stayed bridge. Results indicate traffic load effects on the bridge are lower than the design values under current low daily traffic volume, and therefore cable replacement could be conducted without traffic control. However, considering a possible medium or high level of daily traffic volume, traffic load effects of girder bending moment and cable force nearest to the replaced cable become larger than the design level. This indicates a potential risk of failure, and traffic control should be implemented. Parametric studies show that speed control does not decrease but increase the load effects, and flow control using lane closure is not effectual. However, weight control and gap control are very effective to mitigate traffic load effects, and it is recommended to employ a weight control with gross vehicle weight no more than 65 t or/and a gap control with minimum vehicle gap no less than 40 m for the cable replacement of the case bridge.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.