• 제목/요약/키워드: Low pressure carburizing

검색결과 14건 처리시간 0.028초

저압식 진공 침탄(LPC) 열처리 공정 기술 개발 (Development of Process Technology for Low Pressure Vaccum Carburizing)

  • 동상근;양제복
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.231-237
    • /
    • 2004
  • Vacuum carburizing continues to gain acceptance as an alternative to atmosphere carburizing particularly in the car industry. The advantages of low-pressure carburization over atmospheric gas carburization is not only the creation of a surface entirely free of oxide and the environmentally friendly nature of these methods but also an improvement in deformation behaviour achieved by combining carburization with gas quenching, a reduction in batch times by increasing the carburization temperature, low gas and energy consumption and the prevention of soot to a large extent. In present study, an improved vacuum carburizing method is provided which is effective to deposit carbon in the surface of materials and to reduce cycle time. Also LPC process simulator was made to optimize to process controls parameters such as pulse/pause cycles of pressure pattern, temperature, carburizing time, diffusion time. The carburizing process was simulated by a diffusion calculation program, where as the model parameters are proposed with help the experimental results and allows the control of the carburizing process with good accordance to the practical results. Thus it can be concluded that LPC process control method based on the theoretical simulation and experimental datas appears to provide a reasonable tool for prototype LPC system.

  • PDF

뺏치식 저압침탄 고압가스냉각 시스템 개발 (Development of Low Pressure Carburizing and High Pressure Gas Quenching System)

  • 장병록;한형기;김원배;동상근;김한석;조한창
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.78-84
    • /
    • 2005
  • The development of eco-friendly low pressure carburizing system with high pressure gas quenching (LPC_GQ, 500kg/charge) led to new stage in the fundamental case-hardening treatments. This is due to its ability to provide tighter tolerances on the carburizing process with notable reductions in distortion of the carburized and hardened workpiece. This system is characteristics by high uniformity and reproducibility of heat treatment results, absence of an intergranular oxidation layer, carburizing of complex shapes, reduced cycle time, low operating costs, simplified production, eliminate post washing, and reduced grinding costs.

  • PDF

Batch type 가스침탄 열처리로 국산화개발 (Development of High Performance Low Pressure Carburizing System)

  • 김원배;동상근;장병록;한형기;김한석;조한창
    • 열처리공학회지
    • /
    • 제19권5호
    • /
    • pp.262-269
    • /
    • 2006
  • The development of eco-friendly low pressure carburizing system with high pressure gas quenching(LPC-GQ, 500kg/charge) led to new stage in the fundamental case-hardening treatments. This is due to its ability to provide tighter tolerances on the carburizing process with notable reductions in distortion of the carburized and hardened workpiece. This system is characteristics by high uniformity and reproducibility of heat treatment results, absence of an intergranular oxidation layer, carburizing of complex shapes, reduced cycle time, low operating costs, simplified production, eliminate post washing, and reduced grinding costs.

진공 침탄에서 아세틸렌 압력이 AISI 4120 강의 표면 물성에 미치는 영향 (Influence of Acetylene Pressure of Low-Pressure Carburization on the Carburizing Properties of AISI 4120 steel)

  • 권기훈;손윤호;이영국;문경일
    • 열처리공학회지
    • /
    • 제37권5호
    • /
    • pp.228-236
    • /
    • 2024
  • Low pressure carburizing is an industrially adopted process to modify the mechanical properties of the iron surface. Since acetylene gas is used as a carbon source, it has excellent carbon absorption and uniform carburizing layer compared to other carburizing gas. The superiority of carburizing properties is determined by the selection of process parameters such as acetylene flow rate and process pressure. The the effects of the pressure of acetylene as a carburizing gas on carbon transfer and surface properties of carburized specimen. AISI 4120 steel was carburized using pure acetylene at flow rates of 10, 30 sccm and pressure conditions of 1, 5, 10, 15, 20 torr. In order to investigate the carbon behavior according to the acetylene pressure, the mass gain of carbon was measured and the abnormal structure formed on the surface was observed. With the experimental results, Abnormal layers such as soot and cementite were not observed on the surface of the carburized specimens under the 10 sccm condition, and there was no significant difference in carburizing properties according to pressure. On the other hand, as the pressure increased under the condition of 30 sccm, the cementite fraction increased, and soot was formed from 15 torr, reducing the overall hardness gradient.

저압 침탄에 의한 Ti-6Al-4V 합금의 표면 특성 개선 (Improvement of Surface Properties of Ti-6A1-4V Alloy by Low Pressure Carburizing)

  • 김지훈;박종덕;김성완
    • 열처리공학회지
    • /
    • 제16권4호
    • /
    • pp.191-196
    • /
    • 2003
  • For improvement of the wear performance of Ti alloy, vacuum-carburizing technique was tried for the first time using propane atmosphere. During the low pressure carburizing carbide was formed at the surface and carbon transfer was occurred from the carbide to the matrix. It was found that: (i) surface hardness increased with the reduction of operating pressure and time; (ii) optimum hardness distribution could be obtained with the proper choice of temperature and carbon flux control; and, (iii) case depth was largely influenced not by time but by temperature. The two steps process was recommended for obtaining thick case depth and high surface hardness of Ti alloy. For the low oxygen partial pressure, it was necessary to introduce additional CO gas to the atmosphere.Grain boundary oxidation and non-uniformity could be prevented.

Cr-Mo 저합금강의 진공침탄 공정 압력 및 질소 첨가 비율에 따른 경화깊이 균일도 및 표면 특성 효과 (Effect of process pressure and nitrogen addition ratio on the uniformity of hardening depth and surface properties of Cr-Mo low alloy steel in vacuum carburizing)

  • 권기훈;박현준;안기원;이영국;문경일
    • 한국표면공학회지
    • /
    • 제56권1호
    • /
    • pp.94-103
    • /
    • 2023
  • The effects of carburizing pressure and gas ratio on vacuum carburizing properties (uniformity and surface characteristics) have been studied through the analyses of carbon concentration, hardness, surface color, surface roughness and type of carbon bonding. AISI 4115 steel specimens were carburized with various pressures (1, 5, and 10 Torr) at different locations (P1, P2, P3, P4, P5, and P6) inside a furnace held at 950 ℃. Since the carburizing pressure represents the density of the carburizing gas, it plays an important role in improving the carburizing uniformity according to locations in the furnace. As the carburizing pressure increased, the carburizing uniformity according to the sample location was improved, but the surface of the carburized specimen was discolored due to the residual acetylene gas, which does not contribute to the carburizing reaction. Therefore, the carburizing uniformity and surface discoloration have been improved by injecting acetylene gas (carburizing gas) and nitrogen gas (non-reactive gas) in a specific ratio.

진공상태에서의 전열현상에 대한 실험적 연구 (Experimental Study of Heat Transfer in Vacuum Furnace)

  • 양제복;김원배;동상근
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.109-113
    • /
    • 2003
  • Low pressure or vacuum carburizing(LPC) has undergone major further developments since 1980 and now it has achieved industrial maturity. The advantage of low pressure vacuum carburizing over gas carburizing is not only the creation of surface entirely free of oxide and environmentally friendly but also a reduction in batch times, lower gas and energy consumption and the prevention of soot. In this study the experiment was carried out to investigate the effects of vacuum atmosphere in the heating furnace. Heat transfer rate and uniformity of temperatures of test samples in the pressure range of a few 0.1torr was examined on a test charge of 100kg. It is found that the fuel saving rate due to decreasing heating time reach to 20% in the vacuum heating mode as compared with atmospheric heating mode. Also the uniformity of temperatures in the samples was improved significantly in the vacuum heating mode. Also the effects of the RC fan for stirring atmosphere inside furnace was examined. Results shows RC fan appears to provide a reasonable tool for improving uniformity of temperature in the atmospheric heating mode.

  • PDF

Enhancement of Surface Hardness and Corrosion Resistance of AISI 310 Austenitic Stainless Steel by Low Temperature Plasma Carburizing Treatment

  • Lee, Insup
    • 한국표면공학회지
    • /
    • 제50권4호
    • /
    • pp.272-276
    • /
    • 2017
  • The response of AISI 310 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. This grade of stainless steel shows better corrosion resistance and high temperature oxidation resistance due to its high chromium and nickel content. In this experiment, plasma carburizing was performed on AISI 310 stainless steel in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-Ar-CH_4$ gas mixtures. The working pressure was 4 Torr (533Pa approx.) and the applied voltage was 600 V during the plasma carburizing treatment. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. The phase of carburized layer formed on the surface was confirmed by X-ray diffraction. The resultant carburized layer was found to be precipitation free and resulted in significantly improved hardness and corrosion resistance.

Vacuum Carburizing System for Powdered Metal Parts & Components

  • Kowakewski, Janusz;Kucharski, Karol
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1018-1021
    • /
    • 2006
  • Powdered metal parts and components may be carburized successfully in a vacuum furnace by combining carburizing technology $VacCarb^{TM}$ with a hi-tech control system. This approach is different from traditional carburizing methods, because vacuum carburizing is a non-equilibrium process. It is not possible to set the carbon potential as in a traditional carburizing atmosphere and control its composition in order to obtain a desired carburized case. This paper presents test results that demonstrate that vacuum carburizing system $VacCarb^{TM}$ carburized P.M. materials faster than traditional steel with acceptable results. In the experiments conducted, PM samples with the lowest density and open porosity showed a dramatic increase in the surface carbon content up to 2.5%C and a 3 times deeper case. Currently the boost-diffusion technique is applied to control the surface carbon content and distribution in the case. In the first boost step, the flow of the carburizing gas has to be sufficient to saturate the austenite, while avoiding soot deposition and formation of massive carbides. To accomplish this goal, the proper gas flow rate has to be calculated. In the case of P.M. parts, more carbon can be absorbed by the part's surface because of the additional internal surface area created by pores present in the carburized case. This amount will depend on the density of the part, the densification grade of the surface layer and the stage of the surface. "as machined" or "as sintered". It is believed that enhanced gas diffusion after initial evacuation of the P.M. parts leads to faster carburization from within the pores, especially when pores are open . surface "as sintered" and interconnected . low density. A serious problem with vacuum carburizing is delivery of the carbon in a uniform manner to the work pieces. This led to the development of the different methods of carburizing gas circulation such as the pulse/pump method or the pulse/pause technique applied in SECO/WARWICK's $VacCarb^{TM}$ Technology. In both cases, each pressure change may deliver fresh carburizing atmosphere into the pores and leads to faster carburization from within the pores. Since today's control of vacuum carburizing is based largely on empirical results, presented experiments may lead to better understanding and improved control of the process.

  • PDF