• Title/Summary/Keyword: Low level waste

Search Result 420, Processing Time 0.024 seconds

Radiological analysis of transport and storage container for very low-level liquid radioactive waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Park, Seong Hee;Kim, Youn Jun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4137-4141
    • /
    • 2021
  • As NPPs continue to operate, liquid waste continues to be generated, and containers are needed to store and transport them at low cost and high capacity. To transport and store liquid phase very low-level radioactive waste (VLLW), a container is designed by considering related regulations. The design was constructed based on the existing container design, which easily transports and stores liquid waste. The radiation shielding calculation was performed according to the composition change of barium sulfate (BaSO4) using the Monte Carlo N-Particle (MCNP) code. High-density polyethylene (HDPE) without mixing the additional BaSO4, represented the maximum dose of 1.03 mSv/hr (<2 mSv/hr) and 0.048 mSv/hr (<0.1 mSv/hr) at the surface of the inner container and at 2 m away from the surface, respectively, for a 10 Bq/g of 60Co source. It was confirmed that the dose from the inner container with the VLLW content satisfied the domestic dose standard both on the surface of the container and 2 m from the surface. Although it satisfies the dose standard without adding BaSO4, a shielding material, the inner container was designed with BaSO4 added to increase radiation safety.

Low and Intermediate Level Radioactive Waste Certification Program Plan (중.저준위 방사성폐기물 인증 프로그램 계획)

  • Ahn Sum-Jin;Kim Tae-Kook;Lee Young-Hee;Kang Ill-Sik;Shon Jong-Sik;Hong Kwon-Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.187-195
    • /
    • 2006
  • The regulation for the low and intermediate level radioactive waste to be transferred to the disposal facility, recently revised, require that radioactive waste generators should set up waste certification program to verify the radioactive waste conform to the waste acceptance criteria(WAC) before disposal. The radioactive waste disposal facility, scheduled to be constructed in Korea, will institute WAC for the wastes to be transferred to the facility. This WAC is expected to compose of the requirements for the radiological characterization, physical and chemical characterization, physical/chemical restriction, prohibited item, packaging, identification, labeling, and documentation. For the compliance with this regulation, The radioactive waste generators should verify that the waste meet WAC through performance of the waste certification program and are responsible for handing in all the certification documents to the disposal facility. This waste certification program plan was set up as a preliminary program for the certification of radioactive waste generated in Korea Atomic Energy Research Institute (KAERI) and should be further revised until preparation of WAC by disposal agent.

  • PDF

Plan to Develop the Radioactive Waste Certification Program (방사성폐기물인증프로그램 개발 방안)

  • Chung Hee-Jun;Lee Jae-Min;Whang Joo-Ho;Kim Heon;Jeong Yi-Yeong
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.205-210
    • /
    • 2005
  • The proposed regulation for low and intermediate level radioactive waste disposal facility, scheduled to be revised, recommends that the waste generator should verify the radioactive waste conforms to the disposal requirements before disposing of it. According to the regulation, the radionuclide concentration of the radioactive waste, and its physical and chemical characteristics and safety must be confirmed prior to the disposal of low and intermediate level radioactive wastes, and the waste generator is required to deliver this information to the disposal facility operator. In addition, the disposal facility operator must assess the safety of the disposal site to establish the SWAC (Site Specific Waste Acceptance Criteria) in consideration of the characteristics of the site, whereas the waste generator must comply with the criteria in managing, disposing of and delivering low and intermediate level radioactive wastes. To abide by the afore-mentioned regulation and criteria, the waste generator must verify that the radioactive wastes to be disposed of are suitable for disposal before they are transported to the disposal facility, and to this end a radioactive waste certification program must be developed. This study conducted an in-depth analysis of the radioactive waste certification programs enforced in countries advanced in atomic energy to develop a draft of a certification program applicable to local power plants, and the program is currently applied as pilot to Uljin Power Plants No. 1 & 2 to prove its applicability. This study is going to analyze the results of the pilot application with a view to developing a radioactive waste certification program suitable to local conditions.

  • PDF

A Development of Technology for Low- and Intermediate-Level Radioactive Waste Treatment utilizing Induction heater and Plasma torch (플라즈마 및 전기유도가열을 이용한 중.저준위 방사물 처리기술 개발)

  • Moon, Young-Pyo;Cho, Chun-Hyung;Song, Myung-Jae;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.357-360
    • /
    • 1997
  • Currently, there is a need for the development of an advanced new technology for Low-and Intermediate-Level Radioactive Waste (LILW) treatment from nuclear power plants. The vitrification and melting technology by the use of the electrical equipments such as induction heater and plasma torch based furnace, along with off-gas treatment are considered as the most promising one of the LILW treatment technology since they can produce a very stable waste forms as well as considerably large volume reduction, which is a world-wide trend to apply for radioactive waste treatment. Korea Electric Power Research Institute(KEPRI) has already completed a feasibility study on LILW treatment and conceptual system design of a demonstration plant to be constructed. For this research, KEPRI selected a cold crucible melter(CCM) for the vitrification of combustible waste, and plasma torch based furnace(PT) for the melting of noncombustible waste, along with off-gas treatment for the volatile radioisotopes such as cesium.

  • PDF

Factors affecting practice of infectious wastes management of dental professionals (치과 종사자의 감염성 폐기물관리 실천에 영향을 미치는 요인)

  • Lee, Eun-Bi;Jang, Jong-Hwa
    • Journal of Korean Academy of Oral Health
    • /
    • v.42 no.4
    • /
    • pp.175-180
    • /
    • 2018
  • Objectives: This study aimed to evaluate the relationship between oral health professionals' knowledge, attitude, and practice with regard to infectious waste management and to identify related factors influencing it. Methods: The study comprised of 219 oral health professionals from select dental clinics and public health centers recruited between August 25, 2016 and September 5, 2016, who agreed to participate in the study with full understanding of the study objectives. A self-reported questionnaire was administered, which consisted of 22 items on knowledge of infectious waste management, 9 items on attitude, and 16 items on practice. Data were analyzed using Pearson's correlation coefficient and stepwise multiple regression analyses. Results: The age, knowledge, and clinical attitude of oral health professionals significantly correlated with waste management practice. Specifically, infectious waste management practice improved with increasing age, a greater level of knowledge, and a more positive clinical attitude. Additionally, the standardized regression coefficient demonstrated that, of these three factors, clinical attitude more strongly correlated with effective waste management practice, followed by age and level of knowledge. Conclusions: These results indicated that oral health professionals had a low level of knowledge regarding infectious waste management, and a more positive clinical attitude resulted in better practices. Therefore, the development of detailed and active education guidelines and strategies are needed to enhance the attitude, knowledge, and practice of oral health professionals with regard to infectious waste management.

Evaluation of the Safty for the Disposal of High-level Nuclear Waste in the Granite (화강암지역에 고준위 원자력 폐기물 처리에 대한 안정성 평가)

  • Oh, Chang Whan
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.215-225
    • /
    • 1996
  • All the radionuclides in high-level nuclear waste will decay to harmless levels eventually but for some radionuclides decay is so slow that their radiation remains dangerous for times on the order of tens or hundreds of thousands of years. At the present time, the most favorite disposal plan for high-level radioactive waste is a mined geological disposal in which canister enclosing stable solid form of radioactive waste is placed in mined cavities locating hundred meters below the surface. The chief hazard in such disposal is dissolution of radionuclides from the waste in the groundwater that will eventually carry the dissolved radionuclides to surface environments. The hazard from possible escape of the radionuclides through groundwater can be delayed by engineered and geologic barriers. The engineered barriers can become useless by unexpected geologic catastrophe such as volcanism, earthquake, and tectonic movement and by fraudulent work such as careless construction, improperly welded canisters within the first few decades or centuries. As a result, dangerously radioactive waste which is still intensively radioactive is directly exposed to attack by moving groundwater. All the more, it is almost impossible to control repositories for times more than 10,000 years. Therefore, naturally controlled geologic, barriers whose properties will not be changed within 10,000 years are important to guarantee the safety of repositories of high-level radioactive waste. In Sweden and France, the suitability of granite for the mined geological disposal of high-level waste has been studied intensively. According to the research in Sweden and France, granites has the following physio-chemical characteristics which can delay the transportation of radionuclide by groundwater. First, the permeabilities of granites decreases as the depth increases and is $10^{-8}{\sim}10^{-12}m/s$ at depth below 300 m. Second, groundwater at depth below 300 m has pH=7-9 and reducing condition (Eh=-0.1~0.4). This geochemical condition is desirable to prevent both canister and solid waste from corrosion. Third most radionuclides are not transported by low solubilities and some radionuclide with high solubility such as Cs and Sr are retarded by absorption of geologic media through which ground water flows. Therefore, if high-level waste is disposed at depth below 300 m in the granite body which has a low permeability and is geologically stable more than 10,000 years, the safety of repositories from the hazard due to radionuclide escape can guaranteed for more than 10,000 years.

  • PDF

Measurement of Ultrasonic Speed for Evaluating Compressive Strength of Solidified Low & Intermediate-Level Radioactive Wastes (중·저준위 방사성폐기물 고화체의 압축강도 평가를 위한 초음파속도 측정)

  • Moon, Gyoon Young;Lee, Tae Hun;Moon, Yong Sig
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.26-30
    • /
    • 2011
  • In order to ship low & Intermediate level radioactive waste drums, which have been temporarily stored on site, to a disposal facility, their physical and chemical properties should be evaluated and proven to meet the acceptance guideline prior to their shipment. Ultrasonic velocity method, which has been used to estimate the strength of concrete, can be suggested to evaluate the compressive strength of solidified radioactive waste, which is one of the evaluated properties. The strength is estimated from acoustic velocity. However, a guided wave traveling along a drum is generated when applying ultrasonic method to the drum, and this makes it difficult to analyze the signal due to overlap between transmitted wave through the contents in drum and the guided wave. This paper reported feasibility of ultrasonic method to evaluate of the compressive strength of the solidified LLW. It is observed that the guide wave is greater than transmitted wave, and ultrasonic velocity could be estimated from transmitted wave signal arriving prior to the guided wave

On the use of flyash-lime-gypsum (FaLG) bricks in the storage facilities for low level nuclear waste

  • Sidhu, Baltej Singh;Dhaliwal, A.S.;Kahlon, K.S.;Singh, Suhkpal
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.674-680
    • /
    • 2022
  • In the present study, radiation shielding and protection ability of prepared Flyash-lime-Gypsum (FaLG) bricks has been studied in terms of energy exposure build up factors and dose parameters. The energy exposure build up factors of Flyash-lime-Gypsum (FaLG) bricks have been calculated for the energy range of 0.015 MeV-15 MeV and for penetration depth upto 40 mfp directly using a new and simplified Piecewise Linear Spline Interpolation Method (PLSIM). In this new method, the calculations of G.P fitting parameters are not required. The verification and accuracy of this new method has been checked by comparing the results of exposure build up factor for NBS concrete calculated using present method with the results obtained by using G.P fitting method. Further, the relative dose distribution and reduced exposure dose rate for various radioactive isotopes without any shielding material and with Flyash-lime-Gypsum (FaLG) bricks have been calculated in the energy range of 59.59-1332 keV. On the basis of the obtained results, it has been reported that the prepared Flyash-lime-Gypsum (FaLG) bricks possess satisfactory radiation shielding properties and can be used as environmentally safe storage facilities for low level nuclear waste.

Water Quality Characteristics of Busan Metropolitan Streams (부산광역시 일부하천의 수질특성)

  • 김부길;문종익;고현웅;임영석;성낙창;이용두
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.56-62
    • /
    • 2001
  • This study is carried out to investigate the water quality changes in Busan Metropolitan streams, The results are as follows. The level of organic contaminants($BOD_{5}$ and $COD_{Mn}$) is found to be low and does not show seasonal variation in domestic waste water streams. But, the level of organic contaminants in industrial waste water streams is relatively high and seems to be seasonally variable, which is affected by other factors. The nutrient materials, such as nitrogen(as T-N, about 20mg/L) and phosphorus(as T-P about 2.0mg/L), are abundant than Nak Dong River and the general trends of contaminants level are similar to those of organic contaminants. The chronic water qualities, including organic, nutrient contaminants levels, show that the loading rates in 1998 are smaller than the past(1983, 1992). And this trend is more evident in industrial waste water streams than domestic waste water streams.

  • PDF

Structural stability analysis of waste packages containing low- and intermediate-level radioactive waste in a silo-type repository

  • Byeon, Hyeongjin;Jeong, Gwan Yoon;Park, Jaeyeong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1524-1533
    • /
    • 2021
  • The structural stability of a waste package is essential for containing radioactive waste for the long term in a repository. A silo-type disposal facility would require more severe verification for the structural integrity, because of radioactive waste packages staked with several tens of meters and overburdens of crushed rocks and shotcretes. In this study, structural safety was analyzed for a silo-type repository, located approximately 100 m below sea level in Gyeongju, Korea. Finite element simulation was performed to investigate the influence of the loads from the backfilling materials and waste package stacks on the mechanical stress of the disposed of wastes and containers. It was identified that the current design of the waste package and the compressive strength criterion for the solidified waste would not be enough to maintain structural stability. Therefore, an enhanced criterion for the compressive strength of the solidified waste and several reinforced structural designs for the disposal concrete container were proposed to prevent failure of the waste package based on the results of parametric studies.