DOI QR코드

DOI QR Code

On the use of flyash-lime-gypsum (FaLG) bricks in the storage facilities for low level nuclear waste

  • Sidhu, Baltej Singh (Department of Physics, S.D. College) ;
  • Dhaliwal, A.S. (Department of Physics, Sant Longowal Institute of Engineering & Technology. Deemed University) ;
  • Kahlon, K.S. (Department of Physics, Sant Longowal Institute of Engineering & Technology. Deemed University) ;
  • Singh, Suhkpal (Department of Basic and Applied Sciences, Physics, Punjabi University)
  • Received : 2020.10.22
  • Accepted : 2021.08.04
  • Published : 2022.02.25

Abstract

In the present study, radiation shielding and protection ability of prepared Flyash-lime-Gypsum (FaLG) bricks has been studied in terms of energy exposure build up factors and dose parameters. The energy exposure build up factors of Flyash-lime-Gypsum (FaLG) bricks have been calculated for the energy range of 0.015 MeV-15 MeV and for penetration depth upto 40 mfp directly using a new and simplified Piecewise Linear Spline Interpolation Method (PLSIM). In this new method, the calculations of G.P fitting parameters are not required. The verification and accuracy of this new method has been checked by comparing the results of exposure build up factor for NBS concrete calculated using present method with the results obtained by using G.P fitting method. Further, the relative dose distribution and reduced exposure dose rate for various radioactive isotopes without any shielding material and with Flyash-lime-Gypsum (FaLG) bricks have been calculated in the energy range of 59.59-1332 keV. On the basis of the obtained results, it has been reported that the prepared Flyash-lime-Gypsum (FaLG) bricks possess satisfactory radiation shielding properties and can be used as environmentally safe storage facilities for low level nuclear waste.

Keywords

References

  1. B.S. Sidhu, A.S. Dhaliwal, K.S. Mann, K.S. Kahlon, Simplified two media method: a modified approach for measuring linear attenuation coefficient of odd shaped archaeological samples of unknown thickness, Appl. Radiat. Isot. 69 (2001) 1516-1520, https://doi.org/10.1016/j.apradiso.2011.06.007.
  2. M.I. Sayyed, M.Y. AlZaatreh, K.A. Matori, H.A.A. Sidek, M.H.M. Zaid, Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries, Results in Physics 9 (2018) 585-592, https://doi.org/10.1016/j.rinp.2018.01.057.
  3. G.R. White, The penetration and diffusion of Co60 gamma rays in water using spherical geometry, Phys. Rev. 80 (1950) 154-156, https://doi.org/10.1103/PhysRev.80.154.
  4. G.L. Simmons, An Adjoint Gamma-Ray Moments Computer Code: ADJMOM-I. NBS Technical Note 748, National Bureau of Standards, 1973.
  5. K. Takeuchi, S. Tanaka, PALLAS-ID (VII). A Code for Direct Integration of Transport Equation in One-Dimensional Plane and Spherical Geometries, Tech. Rep. 84, Japan Atomic Energy Research Institute, 1984.
  6. W.R. Nelson, H. Hirayama, D.W.O. Rogers, EGS4 Code System, SLAC-265, Stanford Linear Accelerator Centre, Stanford, Calif, USA, 1985.
  7. ANSI/ANS-6.4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, American Nuclear Society, La GrangePark, IL, USA, 1991.
  8. Y. Harima, Y. Sakamoto, S. Tanaka, M. Kawai, Validity of the geometric-progression formula in approximating gamma ray buildup factors, Nucl. Sci. Eng. 94 (1986) 24-35. https://doi.org/10.13182/nse86-a17113
  9. A. Shimizu, T. Onda, Y. Sakamoto, Calculation of gammaray buildup factors up to depths of 100 mfp by the method of invariant embedding, (III) generation of an improved data set, J. Nucl. Sci. Technol. 41 (2004) 413-424, https://doi.org/10.1080/18811248.2004.9715503.
  10. Y. Harima, An historical review and current status of buildup factor calculations and applications, Radiat. Phys. Chem. 41 (1993) 631-672, https://doi.org/10.1016/0969-806X(93)90317-N.
  11. G.S. Brar, K. Singh, M. Singh, G.S. Mudahar, Energy absorption buildup factor studies in water, air and concrete up to 100mfp using G-P fitting formula, Radiat. Phys. Chem. 43 (1994) 623-627, https://doi.org/10.1016/0969-806X(94)90177-5.
  12. V.P. Singh, N.M. Badiger, Comprehensive study of energy absorption and exposure buildup factor for concrete shielding in photon energy range 0.015-15MeV upto 40 mfp penetration depth: dependency of density, chemical element, photon energy, Int. J. Nucl. Energy Sci. Technol. 7 (2012) 75-99, https://doi.org/10.1504/IJNEST.2012.046987.
  13. M. Kurudirek, B. Dogan, M. Ingec, N. Ekinci, Y. Ozdemir, Gamma-ray energy absorption and exposure buildup factor studies in some human tissues with endometriosis, Appl. Radiat. Isot. 69 (2011) 381-388, https://doi.org/10.1016/j.apradiso.2010.11.007.
  14. M. Buyukyildiz, M. Kurudirek, Radiological properties of healthy, carcinoma and equivalent breast tissues for photon and charged particle interactions, IJRB (Int. J. Radiat. Biol.) (2017), https://doi.org/10.1080/09553002.2018.1403057.
  15. E. Kavaz, N. Ahmadishadbad, Y. Ozdemir, Photon buildup factors of some chemotherapy drugs, Biomed. Pharmacother. 69 (2015) 34-41, https://doi.org/10.1016/j.biopha.2014.10.031.
  16. E. Kavaz, U. Perisanoglu, N. Ekinci, Y. Ozdemir, Determination of energy absorption and exposure build up factors by using G-P fitting approximation for radioprotective agents, Int. J. Radiat. Biol. 92 (2016) 380-387, https://doi.org/10.1080/09553002.2016.1175681.
  17. H.B. Kavanoza, O. Akcalia, O. Tokera, B. Bilmeza, M. Caglarb, O. Icellia, A novel comprehensive utilization of vanadium slag/epoxy resin/antimony trioxide ternary composite as gamma ray shielding material by MCNP 6.2 and BXCOM, Radiat. Phys. Chem. 165 (2019) 108446, https://doi.org/10.1016/j.radphyschem.2019.108446.
  18. M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses, J. Alloys Compd. 688 (2016) 111-117, https://doi.org/10.1016/j.jallcom.2016.07.153.
  19. S.R. Manohara, S.M. Hanagodimath, L. Gerward, Energy absorption buildup factors for thermoluminescent dosimetric materials and their tissue equivalence, Radiat. Phys. Chem. 79 (2010) 575-582, https://doi.org/10.1016/j.radphyschem.2010.01.002.
  20. K.S. Mann, T. Korkut, Gamma-ray buildup factors study for deep penetration in some silicates, Ann. Nucl. Energy 51 (2013) 81-93, https://doi.org/10.1016/j.anucene.2012.08.024.
  21. L. Seenappa, H.C. Manjunatha, N. Sowmya, K.N. Sridhar, A study of energy absorption buildup factors of some steels, Radiat. Protect. Environ. 41 (2018) 123-127, https://doi.org/10.4103/rpe.RPE_52_18.
  22. K.S. Mann, J. Singla, V. Kumar, G.S. Sidhu, Investigations of mass attenuation coefficients and exposure buildup factors of some low-Z building materials, Ann. Nucl. Energy 43 (2010) 157-166, https://doi.org/10.1016/j.anucene.2012.01.004.
  23. M. Buyukyildiz, A.D. Kilic, D. Yilmaz, White and some coloured marbles as alternative radiation shielding materials for applications, Radia. Effects Defects in Solids, 2020, https://doi.org/10.1080/10420150.2020.1737695.
  24. V.P. Singh, N.M. Badiger, A comprehensive study of gamma ray exposure buil-up factors and fast neutron removal cross section of Fly-ash bricks, J. Ceramics (2013) 1-13, https://doi.org/10.1155/2013/967264. ID 967264.
  25. H.B. Kavanoz, O. Yagci, Z. Yalcin, O. Icelli, Altindal, M. Okutan, K.S. Mann, Photon parameters for g-rays sensing properties of some thick oxide films, Vacuum 101 (2014) 238-245, https://doi.org/10.1016/j.vacuum.2013.09.001.
  26. S. Singh, S.S. Ghumman, C. Singh, K.S. Thind, G.S. Mudahar, Buildup of gamma ray photons in flyash concretes: a study, Ann. Nucl. Energy 37 (2010) 681-684. https://doi.org/10.1016/j.anucene.2010.02.006
  27. H.C. Manjunatha, B. Rudraswamy, Computation of exposure build-up factors in teeth, Radiat. Phys. Chem. 80 (2011) 14-21. https://doi.org/10.1016/j.radphyschem.2010.09.004
  28. H.C. Manjunatha, B. Rudraswamy, Energy absorption and exposure build-up factors in hydroxyapatite, Radiat. Meas. 47 (2012) 364-370. https://doi.org/10.1016/j.radmeas.2012.02.001
  29. K. Singh, S. Singh, S.P. Singh, G.S. Mudahar, A.S. Dhaliwal, Gamma radiation shielding and health physics characteristics of diaspore-flyash concretes, J. Radiol. Prot. 35 (2015) 401-414. https://doi.org/10.1088/0952-4746/35/2/401
  30. H.C. Manjunatha, L. Seenappaa, B.M. Chandrika, K.N. Sridhar, C. Hanumantharayappa, Gamma, X-ray and neutron shielding parameters for the Al-based glassy Alloys, Appl. Radiat. Isot. 139 (2018) 187-194, https://doi.org/10.1016/j.apradiso.2018.05.014.
  31. L. Seenappa, H.C. Manjunathaa, B.M. Chandrika, K.N. Sridhar, Chikka Hanumantharayappa Gamma, X-ray and neutron interaction parameters of MgeGdeYeZneZr alloys, Radiat. Phys. Chem. 150 (2018) 199-206. https://doi.org/10.1016/j.radphyschem.2018.06.026
  32. G.W. Grodstein, X-ray Attenuation Coefficients from I0 Key to 100 Mev, U.S. NBS Suppl. to Circ, 1957, p. 583.
  33. N. Bhanumathidas, N. Kalidas, New trend in bricks and blocks: the role of FaLG, Indian Concr. J. 66 (7) (1992) 389-392.
  34. P.K. Mehta, J.M. Paulo Monteiro, Concrete; Microstructure, Properties and Materials, The McGraw Hills Companies Inc., New York, 1993.
  35. D.N. Little, Handbook for Stabilization of Pavement Sub Grades and Base Courses with Lime, Kendall Hunt Publishing Company, Iowa, USA, 1995.
  36. A.A. Raheem, O.A. Bello, O.A. Makinde, A comparative study of cement and lime stabilized lateritic interlocking blocks, Pac. J. Sci. Technol. 11 (2010) 27-34.
  37. H.B. Nagaraj, M.V. Sravan, T.G. Arun, K.S. Jagadish, Role of lime with cement in long-term strength of compressed stabilized earth blocks, Int. J. Sustainable Built Environment 3 (2014) 54-61, https://doi.org/10.1016/j.ijsbe.2014.03.001.
  38. M. Garg, M. Singh, R. Kumar, Some aspects of the durability of a Phosphogypsum-lime-fly ash binder, Construction and Building Materials IO (1996) 273-279.
  39. M. Singh, M. Garg, Phosphogypsum-lime-fly ash binder-Its hydration and strength development, Cement Concr. Res. 25 (1995) 752-758. https://doi.org/10.1016/0008-8846(95)00065-K
  40. W. Shen, M. Zhou, Q. Zhao, Study on lime-fly ash-phosphogypsum binder, Construct. Build. Mater. 21 (2007) 1480-1485. https://doi.org/10.1016/j.conbuildmat.2006.07.010
  41. S. Marinkovic, A. Kostic-Pulek, Examination of the system fly ash-lime-calcined gypsum-water, J. Phys. Chem. Solid. 68 (2007) 1121-1125. https://doi.org/10.1016/j.jpcs.2007.02.039
  42. K. Gourav, B.V.V. Reddy, Characteristics of compacted fly ash bricks and fly ash brick masonry, J. Struct. Eng. 41 (2014) 144-157.
  43. A. Ghosh, a S. Chillara, Microstructural development in fly ash modified with lime and gypsum, J. Mater. Civ. Eng. 13 (65) (2001) 65-70, https://doi.org/10.1061/(ASCE)0899-1561, 13:1, 2001.
  44. S. Kumar, A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development, Construct. Build. Mater. 16 (2002) 519-525, https://doi.org/10.1016/S0950-0618(02)00034-X.
  45. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom - a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653-654, https://doi.org/10.1016/j.radphyschem.2004.04.040.
  46. D.S. Smith, M.G. Stabin, Exposure rate constants and lead shielding values for over 1,100 radionuclides, Health Phys. 102 (2012) 271-291, https://doi.org/10.1097/HP.0b013-318235153a.