• Title/Summary/Keyword: Low Reynolds Airfoil

Search Result 61, Processing Time 0.024 seconds

Numerical investigation of turbulence models with emphasis on turbulent intensity at low Reynolds number flows

  • Musavir Bashir;Parvathy Rajendran;Ambareen Khan;Vijayanandh Raja;Sher Afghan Khan
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.303-315
    • /
    • 2023
  • The primary goal of this research is to investigate flow separation phenomena using various turbulence models. Also investigated are the effects of free-stream turbulence intensity on the flow over a NACA 0018 airfoil. The flow field around a NACA 0018 airfoil has been numerically simulated using RANS at Reynolds numbers ranging from 100,000 to 200,000 and angles of attack (AoA) ranging from 0° to 18° with various inflow conditions. A parametric study is conducted over a range of chord Reynolds numbers for free-stream turbulence intensities from 0.1 % to 0.5 % to understand the effects of each parameter on the suction side laminar separation bubble. The results showed that increasing the free-stream turbulence intensity reduces the length of the separation bubble formed over the suction side of the airfoil, as well as the flow prediction accuracy of each model. These models were used to compare the modeling accuracy and processing time improvements. The K- SST performs well in this simulation for estimating lift coefficients, with only small deviations at larger angles of attack. However, a stall was not predicted by the transition k-kl-omega. When predicting the location of flow reattachment over the airfoil, the transition k-kl-omega model also made some over-predictions. The Cp plots showed that the model generated results more in line with the experimental findings.

Airfoil Design for Martian Airplane Considering Using Global Optimization Methodology

  • Kanazaki, Masahiro;Utsuki, Motohiro;Sato, Takaya;Matsushima, Kisa
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.10-14
    • /
    • 2015
  • To design airfoils for novel airplanes, new knowledge of aerodynamics is required. In this study, modified Parametric SECtion (PARSEC) which is a airfoil representation is applied to airfoil design using a multi-objective genetic algorithm to obtain an optimal airfoil for consideration in the development of a Martian airplane. In this study, an airfoil that can obtain a sufficient lift and glide ratio under lower thrust is considered. The objective functions are to maximize maximum lift-to-drag ratio and to maximize the trailing edge thickness. In this way, information on the low Reynolds number airfoil could be extracted efficiently. The optimization results suggest that the airfoil with a sharper thickness at the leading edge and higher camber at the trailing edge is more suitable for a Martian airplane. In addition, several solutions which has thicker trailing edge thickness were found.

Computational Analysis of the Aerodynamic Performance of a Long-Endurance UAV

  • Jin, Wonjin;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.374-382
    • /
    • 2014
  • This paper presents the computational aerodynamic analysis of a long-endurance UAV that was developed by the Korea Aerospace Research Institute (KARI), named EAV-2. EAV-2 is a technical demonstrator of aerodynamically efficient design, as well as a hybrid electric-propulsion system for future long-endurance UAVs. We evaluated the aerodynamic characteristics of six low-Reynolds number airfoils, using a panel method code, XFOIL, to select an optimal airfoil for the long-endurance mission of EAV-2. The computational results by a CFD code, FLUENT, suggested that the aerodynamic performance of EAV-2 would be notably improved after adopting SG6043 airfoil, and modifying the fuselage design. This reduced the total drag by 43%, compared to that of a previous KARI model, EAV-1, at the target lift of $C_L=1.0$. Also, we achieved a drag reduction of approximately 14% by means of the low-drag fuselage configuration.

반응면 기법을 이용한 에어포일 공력형상 최적설계

  • Park, Young-Min;Kim, Yu-Shin;Chung, Jin-Deog;Lee, Jang-Yeon
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.248-255
    • /
    • 2004
  • In this study, aerodynamic shape design of airfoils was performed by using RSM(response surface method) and two-dimensional Navier-Stokes solver. Numerical experiment points were determined by D-optimal method and quadratic response surfaces were constructed by using JMP. For the validations of design method, NACA 64621 airfoil was inversely designed to have aerodynamic characteristics of Bell airfoil. The design method was applied to the aerodynamic design of both smart UAV wing airfoil and low Reynolds rotor-blade airfoil for unmanned helicopter. The optimized airfoils showed improved performance with various constraint conditions.

  • PDF

TURBULENT FLOW SIMULATION ON THE GROUND EFFECT ABOUT A 2-DIMENSIONAL AIRFOIL (2차원 날개 주위의 지면효과에 대한 난류 유동장 해석)

  • Kim, Y.S.;Lee, J.E.;Shin, M.S.;Kang, K.J.;Kwon, J.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.81-89
    • /
    • 2006
  • Two dimensional turbulent flow simulations on the low Mach number - high Reynolds number flow about the NACA 4412 airfoil are carried out as the airfoil approaches a ground. It has turned out that angle of attack between 2 and 8 degrees is recommended for the airfoil to utilize the benefit of ground effect. For the large angle of attack, the increment of lift due to the ground effect is faded away and negative aerodynamic effect such as destabilizing aspect in static longitudinal stability occurs and the separation point moves to forward as the airfoil approaches a ground.

2-DIMENSIONAL AERODYNAMIC SIMULATION ON THE GROUND EFFECT OF THE NACA 4412 AIRFOIL (NACA 4412 날개의 지면효과에 대한 2차원 공력 해석)

  • Kim, Y.;Lee, J.E.;Shin, M.S.;Kang, K.J.;Kwon, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.199-205
    • /
    • 2006
  • Two dimensional turbulent flow simulations on the low Mach number - high Reynolds number flow about the NACA 4412 airfoil are carried out as the airfoil approaches a ground. It has been turned out that angle of attack between 2 and 8 is recommended for the airfoil to utilize the benefit of ground effect. For the large angle of attack, the increment of lift due to the ground effect is eliminated and negative aerodynamic effect such as destabilizing aspect in static longitudinal stability are occurred as the airfoil approaches a ground.

  • PDF

Nonlinear Characteristics of Flow Separation Induced Vibration at Low-Speed Using Coupled CSD and CFD technique (전산구조진동/전산유체 기법을 연계한 저속 유동박리 유발 비선형 진동특성 연구)

  • Kim, Dong-Hyun;Chang, Tae-Jin;Kwon, Hyuk-Jun;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.140-146
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of a 2-D.O.F airfoil system have been investigated in low Reynolds number incompressible flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-stokes code. To validate developed Navier-Stokes code, steady and unsteady flow fields around airfoil are analyzed. The present fluid/structure interaction analysis is based on the most accurate computational approach with computational fluid dynamics (CSD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed fur the low Reynolds region (R$_{N}$ =500~5000) that has a dominancy of flow viscosity. The effect of R$_{N}$ on the fluid/structure coupled vibration instability of 2-DOF airfoil system is presented and the effect of initial angle of attack on the dynamic instability are also shown.own.

  • PDF

A COMPARATIVE STUDY OF TWO AND THREE DIMENSIONAL LOW REYNOLDS NUMBER FLOW (2차원 및 3차원 저레이놀즈수 유동 해석 비교 연구)

  • Lee, Jae-Hun;Jung, Kyoung-Jin;Lee, Kil-Tae;Kang, In-Mo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.3-7
    • /
    • 2009
  • In this study, two and three dimensional low Reynolds number flows are compared. For the two dimensional flow, an airfoil was considered and for the three dimensional low wing and full-body aircraft were considered. Because a flight condition of the aircraft is in a low Reynolds number flow, itl requires reflecting flow transition. In the two dimensional analysis, transition is predicted using en method. In the three dimensional flow, the effect of transition is included using k-w SST turbulence models.

  • PDF

Aerodynamic Characteristic of NACA XX08 Series at Low Reynolds Flow (NACA XX08시리즈의 저 레이놀즈수에서의 공력특성 연구)

  • Yun, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.636-641
    • /
    • 2015
  • 초소형 비행체는 길이 150mm, 무게 100g 이하의 비행체이다. 초소형 비행체는 그 특성상 저 레이놀즈수에서 비행하며 저 레이놀즈수에서의 공기역학적 특성은 고 레이놀즈수에서의 공기역학적 특성과 큰 차이가 있다. 이는 초소형 비행체 개발 위해 저 레이놀즈수에서의 공력특성 연구가 필요함을 의미한다. 이에 따라 본 연구에서 NACA 4digit Airfoil의 캠버크기와 캠버위치의 변화에 따른 공기역학적 특성의 변화를 확인하였다. 캠버의 위치가 앞전 또는 뒷전으로 이동함에 따라 양력계수가 상승하는 것을 확인하였으며 캠버가 뒷전으로 이동함에 따라 실속이 지연되는 것을 확인하였다. 약 4도 이하의 받음각에서 익형의 아랫변에 발생하는 박리는 고 레이놀즈수에서의 실험에서 확인되어지는 공력특성과 큰 차이를 발생시켰다. 양항비 특성이 가장 우수한 익형은 NACA5808 인 것으로 확인되었다.

  • PDF

Measurement of an Unsteady Boundary Layer of an Oscillating Airfoil at a Low Reynolds Number (저 레이놀즈수에서 진동하는 에어포일의 비정상 경계층 측정)

  • Kim, Dong-Ha;Jang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.9-17
    • /
    • 2006
  • An experimental study was carried out to examine the behavior of the unsteady boundary layer. An NACA 0012 airfoil with aspect ratio of 2.7 was set vertically in a test section, which is sinusoidally pitched about the quarter chord. The oscillating amplitude is from -6$^{\circ}$ to +6$^{\circ}$ and the mean angle of attack is 0$^{\circ}$. Surface mounted probes (Glue-on probes) were employed to measure the surface flow of the boundary layer. Measurements were made at free-stream velocities of 1.98, 2.83, and 4.03m/s, and the corresponding Reynolds numbers based on the chord length were 2.3$\times$104, 3.3$\times$104 and 4.8$\times$104, respectively. The reduced frequency is fixed as 0.1 in all cases. The results show that the surface position of minimum shear stress and of boundary layer break-down can be discerned in the Reynolds number between 2.3$\times$104 and 3.3$\times$104.