• Title/Summary/Keyword: Low Power Management

Search Result 803, Processing Time 0.027 seconds

Sensor Node Circuit with Solar Energy Harvesting (빛 에너지 수확을 이용한 센서 노드 회로)

  • Seo, Dong-hyeon;Jo, Yong-min;Woo, Dae-keon;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.371-374
    • /
    • 2013
  • In this paper, a sensor node circuit using solar energy harvesting is proposed. PMU(Power Management Unit) manages the energy converted from a solar cell. In order to supply a constant voltage to the sensor node, an LDO (Low Drop Out Regulator) is used. The LDO drives a temperature sensor and a SAR ADC(Successive Approximate Register Analog-to-Digital Converter). The circuit has been designed in 0.35um CMOS process.

  • PDF

Development of High Performance & Remote controlled UPS (원격 통제형 UPS 개발)

  • 이왕하;박가우;이진희;김덕규
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.369-374
    • /
    • 2002
  • This paper presented the development trend of UPS and SPS system has focused on large scale system and more convenient system to maintenance and management. In this paper, we proposed low price and high performance SPSs which can de voltage regulation, harmonic reduction, and capable capacity extension in power. These SPSs are composed by two SPSs in their functional structure, one is power control part including voltage regulation and instant voltage compensaton. The others part is web based monitoring and trend management part for more convenient to SPS operator.

  • PDF

Development of AMI NMS (Network Management System) using SNMP for Network Monitoring of Meter Reading Devices (원격검침 설비의 네트워크 상태감시를 위한 SNMP 기반의 저압 AMI 망관리시스템 개발)

  • Kim, Young-Il;Park, So-Jeong;Kim, Young-Jun;Jung, Nam-Jun;Choi, Moon-Suk;Park, Byung-Seok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.259-268
    • /
    • 2016
  • KEPCO installed AMI (Advanced Metering Infrastructure) metering system for low-voltage customers from 2008. AMI metering system of KEPCO has operated 2.55 million customers and will plan to operate 22 million customers until 2020. KEPCO developed AMI NMS (Network Management System) to operate the meter reading network efficiently. NMS monitors the network status of DCUs (Data Concentration Unit) and modems. NMS provides functionalities of data collection and analysis. It collects property data of network device, network topology information, communication performance information, fault information, and etc. It analyzes collected data and controls network devices by remote access. AMI NMS collects about 370 MIBs (Mangement Information Bases) using SNMP (Simple Network Management Protocol). This paper introduces main functionalities, designed context, and implemented service screen.

Low Energy Motion Estimation Architecture using Energy Management Algorithm (에너지 관리 알고리즘을 이용한 저전력 움직임 추정기 구조)

  • Kim Eung-sup;Lee Chanho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.793-800
    • /
    • 2005
  • Computation of multimedia data increases in portable devices with the advances of the mobile and personal communication services. The energy management of such devices is very important for the battery-powered operation hours. The motion estimation in a video encoder requires huge amount of computation, and hence, consumes the largest portion of the energy consumption. In this paper, we propose a novel architecture that a low energy management scheme can be applied with several fast-search algorithms. The energy-constrained Vdd hopping (ECVH) technique reduces power consumption of the motion estimation by adaptively changing the search algorithm, the operating frequency, and the supply voltage using the remaining slack time within given power-budget. We show that the ECVH can be applied to the architecture, and that the power consumption can be efficiently reduced.

A Low Power Lifelog Management Scheme Based on User Movement Behaviors in Wireless Networks (무선 네트워크 환경에서 사용자 이동행위 기반 저전력 라이프로그 관리기법)

  • Yi, Myung-Kyu;Hwang, Hee-Joung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.157-165
    • /
    • 2015
  • With the ever-improving performance of smartphone cameras and the universal dissemination of cloud services, users can now record and store the events in their daily lives more easily and conveniently. The advent of lifelogging technology has been changing the uses as well as the paradigm of internet services, and emphasizing the importance of services being personalization. As the amount of lifelog data becomes vast, it requires an efficient way to manage and store such vast information. In this paper, we propose an low power lifelog management scheme based on user movement behaviors in wireless networks. In order to reduce the power consumption of a smartphone, in our proposal, frequency of data collection and transfer can be dynamically adjusted based on a user's movement pattern. The analytical results show that our approach achieves better performance than that of the existing lifelog management scheme.

MBus: A Fully Synthesizable Low-power Portable Interconnect Bus for Millimeter-scale Sensor Systems

  • Lee, Inhee;Kuo, Ye-Sheng;Pannuto, Pat;Kim, Gyouho;Foo, Zhiyoong;Kempke, Ben;Jeong, Seokhyeon;Kim, Yejoong;Dutta, Prabal;Blaauw, David;Lee, Yoonmyung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.745-753
    • /
    • 2016
  • This paper presents a fully synthesizable low power interconnect bus for millimeter-scale wireless sensor nodes. A segmented ring bus topology minimizes the required chip real estate with low input/output pad count for ultra-small form factors. By avoiding the conventional open drain-based solution, the bus can be fully synthesizable. Low power is achieved by obviating a need for local oscillators in member nodes. Also, aggressive power gating allows low-power standby mode with only 53 gates powered on. An integrated wakeup scheme is compatible with a power management unit that has nW standby mode. A 3-module system including the bus is fabricated in a 180 nm process. The entire system consumes 8 nW in standby mode, and the bus achieves 17.5 pJ/bit/chip.

Power Management Circuit for Self-Powered Systems Using Vibration and Solar Energy (진동 및 빛 에너지를 이용한 자가발전 시스템용 전력관리 회로)

  • Seo, Wan-Suck;Kim, Min-Kyu;Yu, So-Hyeon;Yoon, Eun-Jung;Park, Jun-Ho;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.419-422
    • /
    • 2011
  • In this paper a dual-input self-powered power management system is proposed for low-power applications. The system is powered by merging the energy from a PZT vibration element and a solar cell. The proposed system consists of a charge pump for increasing the output voltage of a solar cell, a rectifier for DC conversion of the PZT output and a power management circuit for merging and managing the harvested energy. The performance of the design circuit has been verified through extensive simulation using a 0.18um CMOS technology. The chip area is $295um{\times}275um$.

  • PDF

Development of Context-Aware Power Management Scheme Using Beacons

  • Lee, Kwang Ok;Lee, Seok Min;Jo, Seonghun;Park, Gyeong Ho;Kim, Se-Jin
    • Journal of Integrative Natural Science
    • /
    • v.11 no.1
    • /
    • pp.44-50
    • /
    • 2018
  • In this paper, we propose a context-aware power management (CPM) scheme using beacons to reduce the power consumption of personal computers (PCs). In the proposed CPM scheme, the PC, smartphone, control server, and Internet of Things (IoT) device are necessary. PC users first log in the control server using their smartphones and select PCs to turn on. Then, the selected PCs automatically go into three different modes, i.e., sleep, shutdown, and standby power off modes, in order when the PC users leave the PCs without turning off them. Further, we develop a testbed with the proposed CPM scheme using the Arduino with Bluetooth low energy (BLE) and relay modules. Finally, it is shown that the proposed CPM scheme outperforms the conventional scheme in terms of the power consumption.

Low Power SoC Modem Design for High-Speed Wireless Communications (초고속 무선 통신을 위한 저전력 모뎀 SoC 설계)

  • Kim, Yong-Sung;Lim, Yong-Seok;Hong, Dae-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.7-10
    • /
    • 2010
  • In this paper, we design a modem SoC (System on Chip) for low power consumption and high speed wireless communications. Among various schemes of high speed communications, an MB-OFDM (Multi Band-Orthogonal Frequency Division Multiplexing) UWB (Ultra-Wide-Band) chip is designed. The MB-OFDM uses wide-band frequency to provide high speed data rate. Additionally, the system imposes no interference to other services. The 90nm CMOS (Complementary Metal-Oxide Semiconductor) technology is used for the SoC design. Especially, power management mode is implemented to reduce the power consumption.

Energy efficiency strategy for a general real-time wireless sensor platform

  • Chen, ZhiCong
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.617-641
    • /
    • 2014
  • The energy constraint is still a common issue for the practical application of wireless sensors, since they are usually powered by batteries which limit their lifetime. In this paper, a practical compound energy efficiency strategy is proposed and realized in the implementation of a real time wireless sensor platform. The platform is intended for wireless structural monitoring applications and consists of three parts, wireless sensing unit, base station and data acquisition and configuration software running in a computer within the Matlab environment. The high energy efficiency of the wireless sensor platform is achieved by a proposed adaptive radio transmission power control algorithm, and some straightforward methods, including adopting low power ICs and high efficient power management circuits, low duty cycle radio polling and switching off radio between two adjacent data packets' transmission. The adaptive transmission power control algorithm is based on the statistical average of the path loss estimations using a moving average filter. The algorithm is implemented in the wireless node and relies on the received signal strength feedback piggybacked in the ACK packet from the base station node to estimate the path loss. Therefore, it does not need any control packet overheads. Several experiments are carried out to investigate the link quality of radio channels, validate and evaluate the proposed adaptive transmission power control algorithm, including static and dynamic experiments.