• Title/Summary/Keyword: Low Frequency Instability

Search Result 134, Processing Time 0.053 seconds

Flame Instability in Heptane Pool Fires Near Extinction (소화근처 헵탄 풀화재의 화염불안정성)

  • Jeong, Tae Hee;Lee, Eui Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1193-1199
    • /
    • 2012
  • A cup burner experiment was performed to investigate the effect of the oxidizer velocity and concentration on flame instability near extinction. Heptane was used as a fuel and air diluted by nitrogen and carbon dioxide was used in the oxidizer stream. Two types of flame instabilities at the flame base and at axial downstream were observed near extinction. The instability at the flame base could be characterized by cell, swing, and rotation modes, and the cell mode changed to the rotation mode through the swing mode as the oxidizer velocity increased. To assess the parameters for the flame instability, the initial mixture strengths, Lewis number, and adiabatic flame temperature were investigated under each condition. The Lewis number might be the most important among them, but it is impossible to generalize because of the insufficient number of cases. Furthermore, the axial periodic flickering motion disappeared at low and high oxidizer velocities near extinction. This resulted from the fact that low oxidizer velocity induced evaporated fuel velocity below the critical velocity and high velocity made the reacting fuel velocity comparable.

Development of the Six Degree-of-Freedom Active Vibration Isolation System by Using a Phase Compensated Velocity Sensor (위상 보상된 속도 센서를 이용한 6자유도 능동 방진 시스템의 개발)

  • Kim, Yong-Dae;Kim, Sang-Yoo;Park, Kyi-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1347-1352
    • /
    • 2009
  • Magnetic force driven six degree-of-freedom active vibration isolation system is developed. The velocity sensor using an electromagnetic principle that is commonly used in the vibration control is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. A lag-type compensator is adopted to reduce the phase lead and the stability test is performed by using a Bode analysis. The performance of the AVIS is validated by comparing with the passive isolation system by using the frequency responses.

Fabrication and Identification of Marx Generator for the Design of High Power Backward Wave Oscillator (대 전력 후진파 발진기의 설계를 위한 마르크스 발생기의 제작 및 검증)

  • Kim, Won-Seop;Hwang, Nak-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.391-399
    • /
    • 1999
  • We have designed the backward wave oscillator, a power-pulsed generator oscillated at 20 GHz has higher frequency than current one. An absolute instability linear analysis was used for the purpose of designing the slow wave structure. A large diameter (D/$\lambda$=4.8) of the slow wave structure was adopted to prevent the breakdown brought about by the increase of power density. We have fabricated a marx generator, pulse forming line and diode. And the development of a compact pulsed power generator with short period and low amplitude is expected.

  • PDF

Flow Control by Piezoceramic Actuator in a flat plate (평판에서 압전 세라믹 액추에이터에 의한 유동제어)

  • Kim, Dong-Ha;Han, Jong-Seob;Chang, Jo-Won;Kim, Hak-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1080-1088
    • /
    • 2009
  • An actuator using piezoceramic material was designed in order to perform a flow control for flat plate flow. Boundary layer measurements were carried out to explore the flow disturbances by the designed actuator that was activated at low excitation frequency(15Hz). The mean velocity and fluctuation in the boundary layers were measured at $x/{\delta}^*=31.9$ downstream from the actuator tip by a one-dimensional hot-wire probe(55P14). Results reveal that low- and high-velocity regions were observed in the vicinity of the actuator center and in the outer area of the actuator respectively, and the formation of counter-rotating streamwise vortices was predicted. The fluctuations were persistently found in the outer part of the actuator and an inflection point in the spanwise gradient of the streamwise velocity was observed. Boundary layer instability was amplified at both the actuator excitation frequency and the T-S wave frequency when the actuator was excited at low frequency.

Spray Characteristics of Simplex Swirl Injector with Low Hydrodynamic Disturbance Generated by Pressure Fluctuation in Feed Line (축방향 압력섭동에 의해 발생되는 저주파 수력학적 교란이 단일 스월 인젝터에 미치는 영향 분석)

  • Khil, Tae-Ock;Kim, Sung-Hyuk;Kim, Hyeon-Sung;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The low frequency combustion instability phenomena generated by pressure drop oscillation such as propellant shake in feed line are studied. To generate the flowrate oscillation by the pressure pulsation up to 400Hz without flow discontinuities and cavitations, a hydrodynamic mechanical pulsator of rotating disk type was produced. Injection pressure conditions are 5, 7 and 9 bar and pressure fluctuation frequency conditions are 0, 4, 6 and 8 Hz. When the injection pressure was oscillated by a mechanical pulsator, the spray shape was pulsated regularly. During the pulsated state of the spray with a mechanical pulsator, the spray characteristics, such as spray angle and liquid film thickness in orifice exit, were measured and compared with those in steady state without a mechanical pulsator. Though the mean injection pressure was fixed in the steady and fluctuating state, there were some differences in all measured values, i.e. liquid film thickness and spray cone angle, between both states.

  • PDF

High-Pass-Filter-Based Virtual Impedance Control for LCL-filtered Inverters Under Weak Grid

  • Wang, Jiangfeng;Xing, Yan;Zhang, Li;Hu, Haibing;Yang, Tianyu;Lu, Daorong
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1780-1790
    • /
    • 2018
  • Voltage feed-forward control (VFFC) is widely used in LCL-type grid-tied inverters due to its advantages in terms of disturbance rejection performance and fast dynamic response. However, VFFC may worsen the stability of inverters under weak grid conditions. It is revealed in this paper that a large phase-lag in the low-frequency range is introduced by VFFC, which reduces the phase margin significantly and leads to instability. To address this problem, a novel virtual-impedance-based control, where a phase-lead is introduced into the low-frequency area to compensate for the phase lag caused by VFFC, is proposed to improve system stability. The proposed control is realized with a high-pass filter, without high-order-derivative components. It features easy implementation and good noise immunity. A detailed design procedure for the virtual impedance control is presented. Both theoretical analysis and experimental results verify the effectiveness of the control proposed.

The Dynamic Characteristics of Pump-fed Hydraulics due to Different Diameter Ratios of the Plate Orifice (펌프 가압식 추진제 공급유로에서의 오리피스 개도에 따른 동적 수력특성 변화)

  • Kim, Hyung-Min;Ko, Tae-Ho;Kim, Sang-Min;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.313-317
    • /
    • 2009
  • The orifice in the propellent feeding pipe line of a Liquid Rocket Engine(LRE) is used to balance the pressure of the pipe line. When a LRE starts up, pressure at the upstream of the orifice rapidly increases. In this case, pressure waves occuring by resistance of the orifice may induce low frequency instability in the pipe line. For this reason the study of dynamic characteristics of orifices is needed to prevent the instability. A pump is used to build up the pressure, and the pressure is measured upstream and downstream of the orifice when the orifice diameter is changed. With the increase of orifice diameter, water hammer decreases, but the effect of resistance downstream is increases.

  • PDF

Instability and Self-Sustained Oscillation of the Flow between Three-Dimensionally Cross-corrugated Plates (3차원 교차 주름판 내 유동의 불안정성 및 자활 진동)

  • Lee Seung Youp;Choi Young Don
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.679-682
    • /
    • 2002
  • Energy dissipations in a general PHE flow are the compounded effects of the piled corrugate geometries and its wall pressure and temperature distributions. In addition, although the exchangers are substantial pieces of engineering equipment, they are composed of a very large number of nominally identical and small geometrical elements. In the present numerical study, the three-dimensionally complicated energy dissipation fields and those wall-shape-induced flow destabilization are investigated in the cross-corrugated passages, which result in high energy transports with comparatively low pressure drop. We revealed the critical conditions as $Re=157.3 for the wall-shape-induced flow destabilization in a general PHE element by initial value method, or shooting method, and compare its value to that of analytical solution of plane Poiseille flow, two-dimensional grooved flow and so on. We also observed the detailed variation of flow field and energy transportation with changes in time and flow variables such as Reynolds number. Lastly, we considered the flow natural frequency, or Strouhal number, with variation of hydrodynamic conditions for the best use of active control, such as forced mass flow rate pulsative flow, to enhance energy transportation.

  • PDF

Stability Analysis of Transverse Vibration of a Spinning Disk with Speed Fluctuation (속도변동성분을 갖는 회전디스크의 횡진동 안정성 해석)

  • 신응수;이기녕;신태명;김옥현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • This paper intends to investigate the effects of speed fluctuation caused by the cogging torque in permanent magnetic motors on the stability of the transverse vibration for a spinning disk. Based on the Kirchhoff\`s plate theory and the assumed mode methods, a set of discretized equations of motion were derived for an annular disk rotating with a harmonically varying speed. Then, a perturbation method using the multiple time scales was employed and stability boundaries were determined explicitly in terms of the magnitude and frequency of speed fluctuation, a nominal sped and the modal characteristics of the disk. It is found that parametric resonance occurs at several speed ranges and a single mode or a combination of two modes are involved to cause instability. It is also observed that unstable regions become broadened as the spinning speed increases or two modes are combined in parametric instability. As numerical simulations, stability analysis of a conventional CD-ROM drive was performed. Results of this work can e used as guidelines for motor design and operations with low vibration.

Flow-induced vibrations of dual-cylinders in axial flow via LES simulations

  • Kangfei Shi;Yu Cao;Zhanying Zheng;Shun Lu;Menglong Liu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3812-3825
    • /
    • 2024
  • The axial-flow-induced vibration of fuel rods in the nuclear power plant is closely related to nuclear safety. In this article, a numerical study is performed on vibration of two elastic cylinders arranged side-by-side in axial flow. Large eddy simulation is employed to predict the turbulent flow. The numerical method has been verified using the experimental root-mean-square vibration amplitude of a single cylinder. A wide range of inflow velocities u*, incident turbulence intensity Tu and space ratio P/D have been examined, where D and P are the diameter and centre-to-centre distance of the cylinders, respectively. The results show that the vibration amplitudes increase with an increasing u*, comparable to the case of a single cylinder in axial flow. However, the two cylinders could bend outwards during a relatively high u* and low Tu. Although Tu significantly affects the amplitudes of the cylinders, it does not change the vibration frequency and the critical velocity at which buckling instability occurs. As the gap between the two cylinders is sufficiently small, the vibration amplitude enhances significantly due to the pronounced hydrodynamic interaction between the two elastic cylinders and surrounding fluid. The direction of buckling is no longer random but fixed.