• Title/Summary/Keyword: Low Flow Rate

Search Result 1,938, Processing Time 0.029 seconds

Performance and Internal Flow of a Cross-Flow Type Hydro Turbine for Wave Power Generation (파력발전용 횡류형 수력터빈의 성능 및 내부유동)

  • Choi, Young-Do;Cho, Young-Jin;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.22-29
    • /
    • 2008
  • Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil and nuclear-fueled power plants to meet establishment of countermeasures against the global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power conversion system to capture the energy of ocean waves have been developed. However, suitable turbine type is not normalized yet because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the internal flow and performance characteristics of a cross-flow type hydro turbine, which will be built in a caisson for wave power generation. Numerical simulation using a commercial CFD code is conducted to clarify the effects of the turbine rotation speed and flow rate variation on the turbine characteristics. The results show that the output power of the cross-flow type hydro turbine with symmetric nozzle shape is obtained mainly from Stage 2. Turbine inlet configuration should be designed to obtain large amount of flow rate because the static pressure and absolute tangential velocity are influenced considerably by inlet flow rate.

Optimization of HVOF Spray Parameters for $Cr_3C_2 - 7wt%NiCr$ Coating Powder by Experimental Design Method (실험계획법에 의한 $Cr_3C_2 - 7wt%NiCr$ 용사분말의 HVOF 용사변수 최적화)

  • 김병희;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.125-134
    • /
    • 1997
  • This study was conducted by L9 orthogonal array to obtain optimum spray parameters for This study was conducted by L9 orthogonal array to obtain optimum spray parameters for $Cr_3C_2 - 7wt%$(80wt%Ni-20wt%Cr) coating powder. The factors were hydrogen flow rate, oxygen flow rate, gun-to-work distance, powder feed rate. And evaluation methods for the coating were surface roughness, oxygen concentration, micro-hardness, pore size and distribution, low angle ($30^{\circ}$) erosion rate, and microstructure of coating. The optimum HVOF spray conditions were proved as follows : hydroen flow rate ; 681 SLPM, oxygen flow rate ; 215 SLPM $H^2/O^2 ratio= 3.16), gun-to-work distance ; 22cm, powder feed rate; 25g/min. The hardness (Hv300) was 1147 and the erosion rate ($30^{\circ}$degree) was $3.16\times10^{-4}$g/g. It is believed that the optimized spray conditions can be improved the wear-resistance and anti-erosion characteristics of the coating.

  • PDF

Uncertainty Assessment of Gas Flow Measurement Using Multi-Point Pitot Tubes (다점 피토관을 이용한 기체 유량 측정의 불확도 평가)

  • Yang, Inyoung;Lee, Bo-Hwa
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.5-10
    • /
    • 2016
  • Gas flow measurement in a closed duct was performed using multi-point Pitot tubes. Measurement uncertainty was assessed for this measurement method. The method was applied for the measurement of air flow into a gas turbine engine in an altitude engine test facility. 46 Pitot tubes, 15 total temperature Kiel probes and 9 static pressure tabs were installed in the engine inlet duct of inner diameter of 264 mm. Five tests were done in an airflow range of 2~10 kg/s. The flow was compressible and the Reynolds numbers were between 450,000 and 2,220,000. The measurement uncertainty was the highest as 6.1% for the lowest flow rate, and lowest as 0.8% for the highest flow rate. This is because the difference between the total and static pressures, which is also related to the flow velocity, becomes almost zero for low flow rate cases. It was found that this measurement method can be used only when the flow velocity is relatively high, e.g., 50 m/s. Static pressure was the most influencing parameter on the flow rate measurement uncertainty. Temperature measurement uncertainty was not very important. Measurement of boundary layer was found to be important for this type of flow rate measurement method. But measurement of flow non-uniformity was not very important provided that the non-uniformity has random behavior in the duct.

Microstructure and Characterization of Ni-C Films Fabricated by Dual-Source Deposition System

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.293-297
    • /
    • 2016
  • Ni-C composite films were prepared by co-deposition using a combined technique of plasma CVD and ion beam sputtering deposition. Depending on the deposition conditions, Ni-C thin films manifested three kinds of microstructure: (1) nanocrystallites of non-equilibrium carbide of nickel, (2) amorphous Ni-C film, and (3) granular Ni-C film. The electrical resistivity was also found to vary from about $10^2{\mu}{\Omega}cm$ for the carbide films to about $10^4{\mu}{\Omega}cm$ for the amorphous Ni-C films. The Ni-C films deposited at ambient temperatures showed very low TCR values compared with that of metallic nickel film, and all the films showed ohmic characterization, even those in the amorphous state with very high resistivity. The TCR value decreased slightly with increasing of the flow rate of $CH_4$. For the films deposited at $200^{\circ}C$, TCR decreased with increasing $CH_4$ flow rate; especially, it changed sign from positive to negative at a $CH_4$ flow rate of 0.35 sccm. By increasing the $CH_4$ flow rate, the amorphous component in the film increased; thus, the portion of $Ni_3C$ grains separated from each other became larger, and the contribution to electrical conductivity due to thermally activated tunneling became dominant. This also accounts for the sign change of TCR when the filme was deposited at higher flow rate of $CH_4$. The microstructures of the Ni-C films deposited in these ways range from amorphous Ni-C alloy to granular structures with $Ni_3C$ nanocrystallites. These films are characterized by high resistivity and low TCR values; the electrical properties can be adjusted over a wide range by controlling the microstructures and compositions of the films.

A Study on Thermal Stratification Characteristics and Useful Rate of Hot Water in Thermal Storage Tank during Hot Water Extraction Process (온수 추출과정 동안 축열조 내의 열성층 특성 및 온수 이용률에 관한 연구)

  • 장영근;박정원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.503-511
    • /
    • 2002
  • Heat flow characteristics during hot water extraction process was studied experimentally. Data were taken at various outlet port type for the fixed inlet port type, inlet-outlet temperature differences and mass flow rates. In this study, the temperature distribution in a storage tank and an outlet temperature were measured to predict a degree of stratification in the storage tank, and a useful rate of hot water was analysed with respect to the variables dominating a extraction process. Experimental results show that the degree of stratification and useful rate of hot water are all high in a low flow rate in case of using modified distributor I (MDI) as the outlet port type.

Hemodynamic Effects on Artery-Graft Anastomotic Intimal Hyperplasia (혈류의 유동이 혈관-인조혈관 접속부 혈관 내막 세포증식에 미치는 영향)

  • 이계한
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.143-150
    • /
    • 1994
  • Wall shear rate or stress is believed to be a major hemodynamic variable influencing atherosclerosis and artery-graft anastomic intimal hyperplasia. The purpose of this study is to verify the effects of radial wall motion, artery-graft compliance and diameter mismatch, and impedance phase angle on the wall shear rate distribution near an end-to-end artery-graft anastomosis model. The results show that radial wall motion of the elastic artery model lowers the mean wall shear rates under pulsatile flow condition by 15 to 20 % comparing to those under steady flow condition at the same mean flow rate. Impedance phase angle seems to have small effects on the mean and amplitude of the wall shear rate distribution. In order to study the effects of compliance and diameter mismatch on the wall shear rates, two models are studied-Model I has 6% and Model I has 6% and Model II has 11% smaller graft diameter. Divergent geometry caused by diameter mismatch near the distal sites reduces the mean wall shear rates significantly, and this low shear region is believed to be prone to intimal hyperplasia.

  • PDF

Multi-sensor monitoring for temperature stress evaluation of broccoli (Brassica oleracea var. italica) (브로콜리(Brassica oleracea var. italica)의 온도 스트레스 평가를 위한 다중 센서 모니터링)

  • Cha, Seung-Ju;Park, Hyun Jun;Lee, Joo-Kyung;Kwon, Seon-Ju;Jee, Hyo-Kyung;Baek, Hyun;Kim, Han-Na;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.347-355
    • /
    • 2020
  • Several sensors have been developed for soil and plants to assess plant stress due to climate change. Therefore, the objective of the study is to nondestructively evaluate temperature stress on plant by monitoring climatic and soil conditions and plant responses using various sensors. Plant responses were monitored by electrical conductivity in plant stem and sap flow rate. Electrical conductivity in plant stem reflects the physiological activity of plants including water and ion transport. Fully grown Brassica oleracea var. italica was exposed to 20/15 ℃ (day/night) with 16 h photoperiods as a control, low temperature 15/10 ℃, and high temperature 35/30 ℃ while climatic, soil, and plant conditions were monitored. Electrical conductivity in plant stem and sap flow rate increased during the day and decreased at night. Under low temperature stress, electrical conductivity in plant stem of Brassica oleracea var. italica was lower than control while under high temperature stress, it was higher than control indicating that water and ion transport was affected. However, chlorophyll a and b increased in leaves subjected to low temperature stress and there was no significant difference between high temperature stressed leaves and control. Free proline contents in the leaves did not increase under low temperature stress, but increased under high temperature stress. Proline synthesis in plant is a defense mechanism under environmental stress. Therefore, Brassica oleracea var. Italica appears to be more susceptible to high temperature stress than low temperature.

Electrical characteristics of low-k SiOCH thin film deposited by BTMSM/$O_2$ high flow rates (BTMSM/$O_2$ 고유량으로 증착된 low-k SiOCH 박막의 전기적인 특성)

  • Kim, Min-Seok;Hwang, Chang-Su;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.41-45
    • /
    • 2008
  • We studied the electrical characteristics of low-k SiOCR interlayer dielectric(ILD) films fabricated by plasma enhanced chemical vapor deposition (PECVD). The precursor bis-trimethylsilylmethane (BTMSM) was introduced into the reaction chamber with the various flow rates. The absorption intensities of Si-O-$CH_x$, bonding group and Si-$CH_x$, bonding group changed synchronously for the variation of precursor flow rate, but the intensity of Si-O-Si(C) responded asynchronously with the $CH_x$, combined bonds. The SiOCH films revealed ultra low dielectric constant around 2.1(1) and reduced further below 2.0 by heat treatments.

  • PDF

Numerical study of a conical MILD combustor with varing the fuel flow rate (연료유량 변화에 따른 원추형 MILD 연소로의 수치적 해석)

  • Kim, Tae Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3370-3375
    • /
    • 2014
  • MILD combustion is a highly favored technology for solving the trade-off relation between high thermal efficiency and low pollutant emissions. The system has low NOx concentration in high temperature combustion by recirculating the combustion gas, as well as improving the thermal efficiency by making the internal temperature in a combustion furnace uniform. This study describes the combustion characteristics of a conical MILD combustor in a laboratory-scale furnace by adjusting the equivalence ratio with the fuel gas flow rate while maintaining a constant air flow rate of the furnace. The MILD regime in the furnace is well characterized and the in-furnace temperature and emissions were predicted, respectively, for the range of equivalence of 0.69 - 0.83. For the range of equivalence ratios, this study confirmed the existence of a stable flame region that has an approximately $300^{\circ}C$ temperature difference between the maximum flame temperature region and main reaction region.

Instability analysis of gas injection into liquid (액상으로 분사되는 기체의 불안정성 해석)

  • Kim Hyung-Jun;Kwon Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.57-60
    • /
    • 2006
  • The instability analysis of submerged gas flow into liquid is studied, which assumes gas and liquid as viscous and irrotational. At low mass flow rate of gas, injected gas plume is collection of bubbles, and increase of gas flow rate makes plume as a jet. It is well known that the transition from bubbling to jetting occurs in the transonic region. But previous works neglect viscous effect of gas flow into liquid. This paper concerns about an application of viscous potential flow theory in cylindrical gas flow into liquid. The growth rate versus wave number and mach number is compared with various condition including inviscid and viscous flow.

  • PDF