• Title/Summary/Keyword: Low $CO_2$ emissions

Search Result 266, Processing Time 0.025 seconds

Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam

  • Vu, T.K.V.;Vu, D.Q.;Jensen, L.S.;Sommer, S.G.;Bruun, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.716-729
    • /
    • 2015
  • Small-scale household digesters have been promoted across Asia as a sustainable way of handling manure. The major advantages are that they produce biogas and reduce odor. However their disadvantages include the low recycling of nutrients, because digestate is dilute and therefore difficult to transport, and the loss of biogas as a result of cracks and the intentional release of excess biogas. In this study, life cycle assessment (LCA) methodology was used to assess the environmental impacts associated with biogas digesters in Vietnam. Handling 1,000 kg of liquid manure and 100 kg of solid manure in a system with a biogas digester reduced the impact potential from 4.4 kg carbon dioxide ($CO_2$) equivalents to 3.2 kg $CO_2$ equivalents compared with traditional manure management. However, this advantage could easily be compromised if digester construction is considered in the LCA or in situations where there is an excess of biogas which is intentionally released. A sensitivity analysis showed that biogas digesters could be a means of reducing global warming if methane emissions can be kept low. In terms of eutrophication, farms with biogas digesters had 3 to 4 times greater impacts. In order to make biogas digesters sustainable, methods for recycling digestates are urgently required.

Enhancing the Eco-product Consumption as a Climate Change Mitigation Measure: The Case of Recycled Copy Paper (기후변화 완화대책으로서의 재생복사용지 소비 개선 연구)

  • Bae, Suk-Han;Lee, Shin
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.116-128
    • /
    • 2022
  • Purpose: The paper aims to: 1) identify the reasons for the low usage of recycled paper in domestic workplaces and the premature state of recycled paper industry; 2) assess the environmental effects of replacing domestically consumed copy papers with recycled papers; and 3) suggest ways in which the recycled paper industry can expand in South Korea. Method: Questionnaire survey with cluster sampling is used to identify the attitudes and behavior with respect to recycled copy paper, the results of which are analyzed using SPSS. The environmental effect of replacing copy papers with recycled paper is assessed through the Life Cycle Assessment approach and Paper Calculator V4.0. Result: While the respondent's experience in using recycled copy paper was relatively low, they tend to acknowledge the need for its use and show relatively high satisfaction with the quality of the recycled paper. The environmental benefits of replacing ordinary copy paper with 40%+ recycled paper under the 10% market share increase scenario amounts to 60,000 tons of CO2 emissions reductions. Conclusion: The results from the attitude survey and market research, five approaches to improving the recycled copy paper market are suggested.

Effect of Fuel Injection Timing on Nitrous Oxide Emission from Diesel Engine (디젤엔진에서 연료 분사시기가 아산화질소에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.106-112
    • /
    • 2014
  • The diesel engine, which has high compression ratio than other heat engines, has been using as the main power source of marine transport. Especially, since marine diesel engines offer better specific fuel consumption (SFC), it is environment-friendly compared to those used in other industries. However, attentio should be focused on emissions such as nitrous oxide ($N_2O$) which is generated from combustion of low-grade fuels. Because $N_2O$ in the atmosphere is very stable, the global warming potential (GWP) of $N_2O$ is 310 times as large as that of $CO_2$, and it becomes a source of secondary contamination after photo-degradation in the stratosphere. It has been hitherto noted on the $N_2O$ exhaust characteristics from stationary power plants and land transportations, but reports on $N_2O$ emission from the marine diesel engine are very limited. In this experimental study, a author investigated $N_2O$ emission characteristics by using changed diesel fuel components of nitrogen and sulfur concentration, assessed on the factors which affect $N_2O$ generation in combustion. The experimental results showed that $N_2O$ emission exhibited increasement with increasing of sulfur concentration in fuel. However, all kinds of nitrogen component additives used in experiment could not change $N_2O$ emission.

Thermal Characteristics of Sulgigemi Pellets Using Biomass (바이오매스를 이용한 술지게미 펠릿의 열적 특성)

  • Kim, Dae-Nyeon;Kim, Duk-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.108.1-108.1
    • /
    • 2011
  • This paper proposes the method to develop the fuel of suljigemi pellets using agricultural by-products the occurred during the manufacturing of alcohol. This paper is the goal to make sulgigemi pellet fuel for develops pellet of high calorie. The methods of sulgigemi pellet manufacturing well mix as the dough with the water and the sulgigemi. And then we have dried in the after compression and molding using well mixed the sulgigemi. The moisture of pellets has dried it removed until about 85%. Suljigemi pellet has the effect of zero emission as the soil conditioner using ash after burning. The merits for the sulgigemi pellet are the convenience of storage and custody. Also sulgigemi pellet has the reduction effect of carriage fee, fuel economy and low-cost high-efficiency effects, environmentally clean fuel as CO2 emissions savings. In experiment, we confirmed to calories of the wood pellet and the sulgigemi pellet. The calorie of the suljigemi pellets has high 233 kilo calories than the wood pellets. So the technologies of the sulgigemi fuel pellets are developing low carbon, green growth renewable energy fuel through futuristic energy system will be.

  • PDF

Development of Solution Algorithm for Multi-dimention Road Alignment Design Considering Low-Carbon (탄소저감형 다차원 도로선형설계를 위한 솔루션 알고리즘 개발)

  • Kang, Jeon-Yong;Shim, chang-su
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.11-22
    • /
    • 2015
  • Government efforts for green growth policy initiatives demand low-carbon technologies in the road construction industry. The purpose of this paper is to develop an algorithm of a road alignment design solution for establishing the multi-dimensional information, and to calculate carbon emission quantity due to the geometric design elements in the planning phase of road alignment. The paper developed a calculation method for carbon emission quantity by drawing a speed profile reflected in the operating speed, acceleration and deceleration, which are majors factor of carbon emissions while driving and by applying a carbon emission factor. From this effort, it enabled alignment planning to reduce carbon emission. Object-based parametric design methods of the cross-sections were proposed for alignment planning, and the paper demonstrated a BIM-based road alignment planning solution. The proposed solutions can provide multi-dimensional information on carbon emission quantity and cross section elements through driving simulation. It is expected to allow construction of eco-friendly roads by deriving optimal road alignment to minimize environmental costs.

Assessment of the Locations for Carbon Monoxide Monitoring Stations in Daegu according to Emission Distribution (배출량 분포에 따른 대구시 일산화탄소 측정망 위치의 적절성 평가)

  • Kim, Hyo-Jeong;Jo, Wan-Kuen
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.25-34
    • /
    • 2012
  • Air quality in Daegu area is lower compared to many other cities, since Daegu is a basin surrounded by mountains. Accordingly, the present study investigated the location of carbon monoxide(CO) monitoring stations for systematic CO pollution management on the basis of the CO emission distribution in Daegu area. In order to achieve this purpose, the location of CO monitoring stations, which can be used for the establishment of CO management, were assessed. Emission map in Daegu area was prepared using numerical map and Clean Air Policy Support System(CAPSS) data supplied by the M inistry of Environment. Average emissions were estimated by dividing emission sources into four subgroups(roadway, apartment, industry, and municipal incineration facility) according to legal division. The CO emission intensities were subdivided into 10, which a high number represents a high emission intensity, and the current monitoring stations were evaluated for the determination of their steps in CO emission intensities. As a result, additional installation of monitoring stations were suggested for the high CO emission areas rather than the low CO emission areas. A systematic CO management strategy would be established by the supplying various principle CO data when the CO monitoring stations are additionally installed at Kukwudong and other six sites on the basis of analyses of data obtained from 1999 to 2007.

THERMAL AND NON-THERMAL RADIO CONTINUUM SOURCES IN THE W51 COMPLEX

  • MOON DAE-SIK;KOO BON-CHUL
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.81-102
    • /
    • 1994
  • We have decomposed the 11-cm radio continuum emission of the W51 complex into thermal and non-thermal components. The distribution of the thermal emission has been determined by analyzing HI, CO, and IRAS $60-{\mu}m$ data. We have found a good correlation between the 11-cm thermal continuum and the 60- 11m emissions, which is used to obtain the thermal and non-thermal 11-cm continuum maps of the W51 complex. Most of the thermal continuum is emanating from the compact H II regions and their low-density ionized envelopes in W51A and W51B. All the H II regions, except G49.1-0.4 in W51B, have associated molecular clumps. The thermal radio continuum fluxes of the compact H II regions are proportional to the CO fluxes of molecular clumps. This is consistent with the previous results that the total mass of stars in an H II region is proportional to the mass of the associated molecular clump. According to our result, there are three non-thermal continuum sources in W51: G49.4-0.4 in W51A, a weak source close to G49.2-0.3 in W51B, and the shell source W51C. The non-thermal flux of G49.5-0.4 at 11-cm is $\~28 Jy$, which is $\~25\%$ of its total 11-cm flux. The radio continuum spectrum between 0.15 and 300 GHz also suggests an excess emission over thermal free-free emission. We show that the excess emission can be described as a non-thermal emission with a spectral index ${\alpha}{\simeq}-1.0 (S_v{\propto}V^a)$ attenuated by thermal free-free absorptions at low-frequencies. The non-thermal source close to G49.2-0.3 is weak $(\~9 Jy)$. The nature of the source is not known and the reality of the non-thermal emission needs to be confirmed. The non~thermal shell source W51C has a 11-cm flux of $\~130Jy$ and a spectral index ${\alpha}{\simeq}-0.26$.

  • PDF

An Experimental Study of the Fuel Additive to Improve the Performance of a 2-Stroke Large Diesel Engine (2행정 대형 디젤엔진의 성능향상을 위한 연료첨가제의 실험적 연구)

  • Ryu, Younghyun;Lee, Youngseo;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.620-625
    • /
    • 2015
  • In an effort to reduce the onset of global warming, the International Maritime Organization Marine Environment Protection Committee (IMO MEPC) proposed the reduction in ship speeds as a way of lowering the proportion of carbon dioxide ($CO_2$) in the Green House Gas emissions from ships. To minimize fuel costs, shipping companies have already been performing slow steaming for their own fleets. Specifically, the slow steaming approach has been adopted for most ocean-going container lines. In addition, because of the increased marine fuel cost that is required to enable increased capacity, there is an urgent need for more advanced fuel-saving technologies. Therefore, in this present study, we propose a fuel-cost reduction method that can improve the performance of diesel engines. We introduce a predetermined amount (0.025% of the amount of fuel used) of fuel additive (oil-soluble calcium-based organometallic compound). For improved experimental accuracy, as the test subjects, we utilize a large two-stroke diesel engine installed in land plants. The loads of the test engine were classified as low, medium, and high (50, 75, and 100%, respectively). We compare the engine performance parameters (power output, fuel consumption rate, p-max, and exhaust temperature) before and after the addition of fuel additives. Our experimental results, confirmed that we can realize fuel-cost savings of at least 2% by adding the fuel additive in low load conditions (50%). Likewise, the maximum combustion pressure was found to have increased. On the other hand, we observed that there was a reduction in the exhaust temperature.

A Study on the Optimal Process Design of Cryogenic Air Separation Unit for Oxy-Fuel Combustion (순산소 연소를 위한 초저온 공기분리장치의 최적공정 설계 연구)

  • Choi, Hyeung-Chul;Moon, Hung-Man;Cho, Jung-ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.647-654
    • /
    • 2018
  • In order to solve the global warming and reduce greenhouse gas emissions, it has been developed the $CO_2$ capture technology by oxy-fuel combustion. But there is a problem that the economic efficiency is low because the oxygen production cost is high. ASU (Air Separation Unit) is known to be most suitable method for producing large capacity of oxygen (>2,000 tpd). But most of them are optimized for high purity (>99.5%) oxygen production. If the ASU process is optimized for low purity(90~97%) oxygen producing, it is possible to reduce the production cost of oxygen by improving the process efficiency. In this study, the process analysis and comparative evaluation was conducted for developing large capacity ASU for oxy-fuel combustion. The process efficiency was evaluated by calculating the recovery rate and power consumption according to the oxygen purity using the AspenHysys. As a result, it confirmed that the optimal purity of oxygen for oxyfuel combustion is 95%, and the power consumption can be reduced by process optimization to 12~18%.

Detection of Potential Flow Paths of Leaked CO2 from Underground Storage Using Electrical Resistivity Survey (전기비저항탐사 방법에 의한 지중 저장 이산화탄소 누출 가능 경로 탐지)

  • Lim, Woo-Ri;Hamm, Se-Yeong;Hwang, Hak-Soo;Kim, Sung-Wook;Jeon, Hang-Tak
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.69-79
    • /
    • 2018
  • The Korean government attempts to reduce $CO_2$ emissions by 37% to 314.7 Mt $CO_2$, down from the estimated 850.6 Mt $CO_2$ until 2030 in order to confront green house effect. In this context, in 2014, Korean government launched $CO_2$ Storage Environmental Management Research (K-COSEM) Center for carrying out pilot-scale research on $CO_2$ leakage from underground $CO_2$ storage facilities. For the detection of $CO_2$ leakage, it is necessary to identify hydrologeological and geophysical characteristics of the subject area. In the study site of Naesan-ri, Daeso-myeon, Eumseong-gun, Chungbuk Province, two times injection tests (June 28-July 24, 2017 and August 07-September 11, 2017) of $CO_2$ and $SF_6$ dissolved waters, respectively, was conducted to understand the leakage behavior of $CO_2$ from underground. The injection well was drilled to a depth of 24 m with a 21-m casing and screen interval of 21~24 m depth. Two times resistivity surveys on August 18, 2017 and September 1, 2017, were conducted for revealing the flow of the injected water as well as the electrical properties of the study site. The study results have shown that the high-resistivity zone and the low-resistivity zone are clearly contrasted with each other and the flow direction of the injected water is similar to natural groundwater flow. Besides, the low resistivity zone is widely formed from the depth of injection to the shallow topsoil, indicating that the weathered zone of high permeability has high $CO_2$ leakage potential.