• Title/Summary/Keyword: Longitudinal bar ratio

Search Result 36, Processing Time 0.02 seconds

A Characteristic Study on Shear Strength of Reinforced Concrete Beams according to Longitudinal Reinforcement Ratio and Size Effect (철근콘크리트보의 인장철근비와 크기효과에 의한 전단강도 특성 연구)

  • Yu, In-Geun;Noh, Hyung-Jin;Lee, Ho-Kyung;Baek, Seung-Min;Kim, Woo-Suk;Kwak, Yoon-Keun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.117-126
    • /
    • 2020
  • The main objective of this experimental study is to investigate shear strength of reinforced concrete beams according to longitudinal reinforcement ratio (ρ) and size effect. In order to find out the shear strength according to the tensile reinforcement ratio, in particular, the main variables are 100%, 75% and 50% of ρ=0.01 which is widely used in construction field. A total of twelve RC beams were tested under 4-point loading conditions. In addition to the existing proposal equations, the theoretical values such as KBC and ACI equations are compared with the experimental data. Through this analysis, this study is designed to provide more reasonable equations for shear design of reinforced concrete beams. When shear reinforcement bar spacing of nine specimens (R*-1, R*-2, and R*-3 series) fixed as d/s=2.0 and three specimens of R*-4 series fixed as d/s=1.5 are compared, the shear strength of two groups showed similar values. As a result, the current standard of d/s=2.0 for shear reinforcement bar spacing may be somewhat alleviated.

Experimental study on long-term behavior of RC columns subjected to sustained eccentric load

  • Kim, Chang-Soo;Gong, Yu;Zhang, Xin;Hwang, Hyeon-Jong
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.289-299
    • /
    • 2020
  • To investigate the long-term behavior of eccentrically loaded RC columns, which are more realistic in practice than concentrically loaded RC columns, long-term eccentric loading tests were conducted for 10 RC columns. Test parameters included concrete compressive strength, reinforcement ratio, bar yield strength, eccentricity ratio, slenderness ratio, and loading pattern. Test results showed that the strain and curvature of the columns increased with time, and concrete forces were gradually transferred to longitudinal bars due to the creep and shrinkage of concrete. The long-term behavior of the columns varied with the test parameters, and long-term effects were more pronounced in the case of using the lower strength concrete, lower strength steel, lower bar ratio, fewer loading-step, higher eccentricity ratio, and higher slenderness ratio. However, in all the columns, no longitudinal bars were yielded under service loads at the final measuring day. Meanwhile, the numerical analysis modeling using the ultimate creep coefficient and ultimate shrinkage strain measured from cylinder tests gave quite good predictions for the behavior of the columns.

Cracking Behavior of Steel-Concrete Composite Girders at Negative Moment Region (합성거더 부모멘트부의 균열거동 평가)

  • Youn, Seok-Goo;Seol, Dae-Ho;Ryu, Hyung-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.402-405
    • /
    • 2006
  • Inner support regions of continuous steel and concrete composite bridge decks, transverse crackings are easely developed by tensile forces due to live loads and primary and secondary effects of concrete shrinkage. Since these cracks have an influence on the durability of bridge decks, crack width should be controlled within allowable limit values. Although crack width is a function of steel stress, bar diameter, bar spacing, etc, the current code for the amount of longitudinal reinforcements provides only one value of 2 percent of the concrete area. In order to investigate cracking bahaviors of composite girders with the variation of the longitudinal steel ratios, negative flexural tests are conducted on five composite girders and crack width and crack spacing are compared to ACI Code and Eurocode. Based on the test results, it is discussed the suitability of the current code for the longitudinal steel ratio.

  • PDF

Estimation of Live Load Moment for Concrete Unfilled Steel Grid Deck Using Main Bearing Bar Distribution Factor (하중분배 계수를 적용한 비충전 강합성 바닥판 활하중 모멘트 산정)

  • Park, Young hoon;Kim, Sung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1667-1676
    • /
    • 2014
  • Because of the different flexural rigidity between longitudinal and transverse direction, orthotropic plate theory may be suitable for describing the behavior of composite deck. The ratio of flexural rigidity between longitudinal and transverse direction affects the live load moment. Because of the ratio of flexural rigidity of concrete unfilled steel grid deck has a direct relationship with main bearing bar spacing, it is concluded that the study for the distribution factor which is effected by main bearing bar spacing and aspect ratio is needed. In this study, evaluate the live load moment of concrete unfilled steel grid deck using the AASHTO LRFD Bridge Design Specification and presents the distribution coefficient equation for concrete unfilled steel grid deck.

Bar Development in Gravel-bed River (자갈하상하천의 bar지형 발달에 관한 연구 -골지천을 사례로-)

  • Yang, Hee-Kyung
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.4
    • /
    • pp.435-444
    • /
    • 1997
  • Bars in a river bed show the flow of the river, the shape of a river bar can be easily measured in any river. The purpose of this study is to research the morphological characteristics of river bars. The case study area is the lower Golgi River, six bars were examined. All six bars are gravel bars with a grain size in excess of 2 millimeters. Four of the bars are longitudinal bars, in which the direction of the bar follows the river current. After analyzing the gravel in the bars, it was determined that as the gravel flows down the river, gravel grain size decreases while grain roundness increases. The shape of bar varies locally according to flow regime, channel slope, and w/d ratio.

  • PDF

Flexural behaviour of reinforced low-strength concrete beams strengthened with CFRP plates

  • Boukhezar, Mohcene;Samai, Mohamed Laid;Mesbah, Habib Abdelhak;Houari, Hacene
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.819-838
    • /
    • 2013
  • This paper summarises the results of an experimental study to investigate the flexural behaviour of reinforced concrete beams strengthened using carbon-fibre reinforced polymer (CFRP) laminate in four-point bending. The experimental parameters included are the reinforcing bar ratio ${\rho}_s$ and preload level. Four bar ratios were selected (${\rho}_s=0.13$ to 0.86%), representing the section of two longitudinal tensile reinforcements, with diameters of 8, 14, 16, and 20 mm in order to reveal the effect of bar ratio on failure load and failure mode. Eight beams that could be considered "full-scale" in size, measuring 200 mm in width, 400 mm in total height and 2300 mm in length, were tested. Three beams were selected with different bar ratios (${\rho}_1$, ${\rho}_2$, ${\rho}_3$), and considered as control specimens (without ), while three other beams identical to the control beams with the same CFRP laminates ratio and a seventh beam with ${\rho}_{min}$ (the lowest bar ratio) were also used. In the second part of the study, two beams with the bar ratio ${\rho}_2$ were preloaded at two levels, 50 and 100% of their ultimate loads, and then repaired. This experimental investigation was consolidated using an analytical model. The experimental and analytical results indicate that the flexional capacity and stiffness of strengthened and repaired beams using CFRP laminate were increased compared to those of control beams, and the behaviour of repaired beams was nearly similar to the undamaged and strengthened beams; unlike the ductility of strengthened beams, which was greatly reduced compared to the control.

Characteristics of the shear behavior of RC rectangular sectional columns and initial shear strength considering the ratio of longitudinal bars (RC 사각단면 기둥의 전단거동특성과 축방향철근비를 고려한 초기전단강도)

  • Lee, Jong-Seok;Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.27-36
    • /
    • 2010
  • It is well known that the shear strength of an RC column subjected to a lateral force decreases with the increase of the displacement ductility of column. This decreasing rate of shear strength is quite dependent on the initial shear strength. Therefore, the evaluation of the initial shear strength is important to predict the shear strength with reasonable accuracy. The shear behavior is complex because many parameters, such as the sectional shape, aspect ratio, axial force, longitudinal bars and ductility, are mutually interactive. In this study, the initial shear strength has been investigated by experiments varying parameters such as the aspect ratios, void ratios, ratio of longitudinal bars and sectional types. A new empirical equation for the initial shear strength, considering the ratio of the longitudinal bars, has been proposed and its validity has been assessed.

The Ductile Behavior Test of Ultra High Performance Fiber Reinforced Concrete Rectangular Beam by the Combination of the Fiber and Group of Reinforcing Bars (강섬유와 철근집합체 조합에 의한 초고강도 섬유보강 콘크리트 직사각형보의 연성거동에 대한 실험)

  • Han, Sang-Mook;An, Jin-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.139-148
    • /
    • 2015
  • The purpose of this paper is to induce the ductile behavior of the UHPFRC member after the peak load by using the bundle of longitudinal reinforcing bar as a substitute for steel fiber. Experiments on the flexural behavior of the Ultra High Performance Concrete rectangular beam with the combination of the steel fiber and longitudinal reinforcing bar were carried out. The volume fractions of steel fiber are 0%, 0.7%, 1%, 1.5%, 2% and the reinforcement ratios of longitudinal reinforcing bar which induce the ductile behavior are 0.0036, 0.016, 0.028 and 0.036. 15 UHPC beams were made with the combination of these test factors. Not only steel fiber but also bundle of longitudinal reinforcing bar has the effect to induce ductile behavior of UHPC structural member. The combination of 0.7% volume fraction of steel fiber and 0.028 reinforcement ratio showed the most economic combination. The relationship of load-deflection, strain variation of the concrete and the crack pattern indicate the usefulness of the bundle of the longitudinal bar which has small diameter with close arrangement each other.

Shear Strength of Hybrid Beams Combining Precast Concrete and Cast-In-Place Concrete (프리캐스트 콘크리트와 현장타설 콘크리트 복합 보의 전단강도)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.175-185
    • /
    • 2013
  • Currently in precast concrete construction, precast concrete and cast-in-place concrete with different concrete strengths are used. However, current design codes do not provide shear design methods for PC-CIP hybrid members using dual concrete strengths. In the present study, the shear strengths of beams using dual concrete compressive strengths (24 MPa, 60 MPa) were tested. The test variables were the area ratio of the two concretes, longitudinal bar ratio, and shear span-to-depth ratio. The shear strengths of test specimens were evaluated by current design methods, using an effective concrete strength (considering the area ratio of the two concrete strengths). The test result showed that when 60 MPa concrete was used in the compressive zone and the longitudinal bar ratio was low, the shear strengths of the test specimens were less than the predictions. On the basis of the results, design recommendations were provided for the shear design of the PC-CIP hybrid beams.

Flexural performance of composite sandwich wall panels with foamed concrete

  • Lei Li;Wei Huang;Zhengyi Kong;Li Zhang;Youde Wang;Quang-Viet Vu
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.391-403
    • /
    • 2024
  • The flexural behavior of composite sandwich wall panels with different thicknesses, numbers of holes, and hole forms, and arrangement form of longitudinal steel bar (uniform type and concealed-beam type) are investigated. A total of twelve composite sandwich wall panels are prepared, utilizing modified polystyrene particles mixed with foam concrete for the flexural performance test. The failure pattern of the composite sandwich wall panels is influenced by the extruded polystyrene panel (XPS) panel thickness and the reinforcement ratio in combination, resulting in both flexural and shear failure modes. Increasing the XPS panel thickness causes the specimens to transition from flexural failure to shear failure. An increase in the reinforcement ratio leads to the transition from flexural failure to shear failure. The hole form on the XPS panel and the steel bar arrangement form affect the loading behavior of the specimens. Plum-arrangement hole form specimens exhibit lower steel bar strain and deflection compared to linear-arrangement hole form specimens. Additionally, specimens with concealed beam-type steel bar display lower steel bar strain and deflection than uniform-type steel bar specimens. However, the hole form and steel bar arrangement form have a limited impact on the ultimate load. Theoretical formulas for cracking load are provided for both fully composite and non-composite states. When compared to the experimental values, it is observed that the cracking load of the specimens with XPS panels closely matches the calculations for the non-composite state. An accurate prediction model for the ultimate load of fully composite wall panels is developed. These findings offer valuable insights into the behavior of composite sandwich wall panels and provide a basis for predicting their performance under various design factors and conditions.