DOI QR코드

DOI QR Code

Flexural performance of composite sandwich wall panels with foamed concrete

  • Lei Li (Dept. of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Wei Huang (Dept. of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Zhengyi Kong (Dept. of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Li Zhang (Dept. of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Youde Wang (School of Civil Engineering, Xi'an University of Architecture & Technology) ;
  • Quang-Viet Vu (Laboratory for Computational Civil Engineering, Institute for Computational Science and Artificial Intelligence, Van Lang University)
  • 투고 : 2024.01.29
  • 심사 : 2024.07.30
  • 발행 : 2024.08.25

초록

The flexural behavior of composite sandwich wall panels with different thicknesses, numbers of holes, and hole forms, and arrangement form of longitudinal steel bar (uniform type and concealed-beam type) are investigated. A total of twelve composite sandwich wall panels are prepared, utilizing modified polystyrene particles mixed with foam concrete for the flexural performance test. The failure pattern of the composite sandwich wall panels is influenced by the extruded polystyrene panel (XPS) panel thickness and the reinforcement ratio in combination, resulting in both flexural and shear failure modes. Increasing the XPS panel thickness causes the specimens to transition from flexural failure to shear failure. An increase in the reinforcement ratio leads to the transition from flexural failure to shear failure. The hole form on the XPS panel and the steel bar arrangement form affect the loading behavior of the specimens. Plum-arrangement hole form specimens exhibit lower steel bar strain and deflection compared to linear-arrangement hole form specimens. Additionally, specimens with concealed beam-type steel bar display lower steel bar strain and deflection than uniform-type steel bar specimens. However, the hole form and steel bar arrangement form have a limited impact on the ultimate load. Theoretical formulas for cracking load are provided for both fully composite and non-composite states. When compared to the experimental values, it is observed that the cracking load of the specimens with XPS panels closely matches the calculations for the non-composite state. An accurate prediction model for the ultimate load of fully composite wall panels is developed. These findings offer valuable insights into the behavior of composite sandwich wall panels and provide a basis for predicting their performance under various design factors and conditions.

키워드

과제정보

This work was supported by Major Program of Natural Science Research of Anhui Universities (No. KJ2018ZD006), Anhui Housing Urban and Rural Construction Science and Technology Project (No. 2018YF007), National Natural Science Foundation of China (No. 52278316), and Youth Science and Technology New Star of Shaanxi Province (2024ZC-KJXX-066).

참고문헌

  1. Amran, Y.H.M., Ali, A.A.A., Rashid R.S.M., Hejazi, F. and Safiee, N.A. (2016), "Structural behavior of axially loaded precast foamed concrete sandwich panels", Constr. Build. Mater., 107, 307-320. https://doi.org/10.1016/j.conbuildmat.2016.01.020.
  2. Amran, Y.H.M., Rashid, R.S.M., Hejazi, F., Safiee, N.A. and Ali, A.A.A. (2016), "Response of precast foamed concrete sandwich panels to flexural loading", J. Build. Eng., 7, 143-158. https://doi.org/10.1016/j.jobe.2016.06.006.
  3. Babu, D.S., Babu, K.G., Wee, T.H. (2005), "Properties of lightweight expanded polystyrene aggregate concretes containing fly ash", Cement and Concr. Res., 35(6), 1218-1223. https://doi.org/10.1016/j.cemconres.2004.11.015.
  4. Babu, K.G. and Babu, D.S. (2003), "Behaviour of lightweight expanded polystyrene concrete containing silica fume", Cement and Concr. Res., 33(5), 755-762. https://doi.org/10.1016/S0008-8846(02)01055-4.
  5. Barrera-Diaz, C., Martinez-Barrera, G., Gencel, O., Bernal-Martinez, L.A. and Brostow, W. (2011). "Processed wastewater sludge for improvement of mechanical properties of concretes". J. Hazard. Mater., 192(1), 108-115. https://doi.org/10.1016/j.jhazmat.2011.04.103.
  6. Benayoune, A., Samad, A. A. A., Trikha, D.N., Ali, A.A.A. and Ellinna, S.H.M. (2008), "Flexural behaviour of pre-cast concrete sandwich composite panel-Experimental and theoretical investigations", Constr. Build. Mater., 22(4), 580-592. https://doi.org/10.1016/j.conbuildmat.2006.11.023.
  7. Bicer, A. (2021), "Investigation of waste EPS foams modified by heat treatment method as concrete aggregate", J. Build. Eng., 42, 102472. https://doi.org/10.1016/j.jobe.2021.102472.
  8. Brostow, W., Chetuya, N., Hnatchuk, N. and Uygunoglu, T. (2016). "Reinforcing concrete: comparison of filler effects". J. Clean. Prod., 112(4), 2243-2248. https://doi.org/10.1016/j.jclepro.2015.09.105.
  9. Bush, T.D. and Stine, G.L. (1994), "Flexural behavior of composite precast concrete sandwich panels with continuous truss connectors", PCI J., 39(2), 112-121. https://doi.org/10.15554/pcij.03011994.112.121.
  10. Cao, P.Z., Lu, Y.F. and Wu, K. (2013), "Experimental research on sagging bending resistance of steel sheeting-styrofoam-concrete composite sandwich slabs", Steel Compos. Struct., 15(4), 425-438. http://dx.doi.org/10.12989/scs.2013.15.4.425.
  11. Concrete Structure Design Principle (2012), China Architecture Publishing & Media Co., Ltd, Beijing, China.
  12. Fernando, P.L.N., Jayasinghe, M.T.R. and Jayasinghe, C. (2017), "Structural feasibility of Expanded Polystyrene (EPS) based lightweight concrete sandwich wall panels", Constr. Build. Mater., 139, 45-51. https://doi.org/10.1016/j.conbuildmat.2017.02.027.
  13. Ganapathi, S.C., Peter, J.A., Lakshmanan, N. and Iyer, N.A. (2016), "Behavior of light weight sandwich panels under out of plane bending loading", Steel Compos. Struct., 21(4), 775-789. http://dx.doi.org/10.12989/scs.2016.21.4.775.
  14. GB 50010-2010 (2015), Code for Design of Concrete Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China; Beijing, China.
  15. GB/T 228.1-2021 (2021), Metallic Materials-Tensile Testing- Part 1:Method of Test at Room Temperature, State Administration for Market Regulation; Beijing, China.
  16. GB/T 50081-2019 (2019), Standard for Test Methods of Concrete Physical and Mechanical Properties, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China.
  17. GB/T 50152-2012 (2012), Standard for test method of concrete structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China; Beijing, China.
  18. Gencel, O., Bayraktar, O.Y., Kaplan, G., Benli, A., Martinez-Barrera, G., Brostow, W., Tek, M. and Bodur, B. (2021). "Characteristics of hemp fibre reinforced foam concretes with fly ash and Taguchi optimization", Constr. Build. Mater., 294, 123607. https://doi.org/10.1016/j.conbuildmat.2021.123607.
  19. Gencel, O., Brostow, W., Datashvili, T. and Thedford, M. (2011). "Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash", Compos. Interfaces., 18(2), 169-184. https://doi.org/10.1163/092764411X567567.
  20. Gencel, O., Brostow, W., Ozel, C. and Filiz, M. (2010). "An investigation on the concrete properties containing colemanite". Int. J. Phys. Sci., 5(3), 216-225. https://doi.org/10.5897/IJPS.9000062.
  21. Gencel, O., Ozel, C., Koksal, F., Erdogmus, E., Martinez-Barrera, G. and Brostow, W. (2012). "Properties of concrete paving blocks made with waste marble". J. Clean. Prod., 21(1), 62-70. https://doi.org/10.1016/j.jclepro.2011.08.023.
  22. Goh, W.I., Mohamad, N., Abdullah, R. and Samad A.A.A. (2016), "Finite element analysis of precast lightweight foamed concrete sandwich panel subjected to axial compression", J. Comput. Sci. Comput. Math., 6(1), 1-9. https://doi.org/10.20967/jcscm.2016.01.001.
  23. Gombeda. M.J., Trasborg, P., Naito, C.J. and Quiel, S.E. (2017), "Simplified model for partially-composite precast concrete insulated wall panels subjected to lateral loading", Eng. Struct., 138, 367-380. https://doi.org/10.1016/j.engstruct.2017.01.065.
  24. Gu, X.L. (2015), Basic Principles of Concrete Structures, Tong Ji University Press, Shang Hai, China.
  25. He, J.X., Xu, Z.D., Zhang, L.Y., Lin, Z.H., Hu, Z.W., Li, Q.Q. and Dong, Y.R. (2023), "Shaking table tests and seismic assessment of a full-scale precast concrete sandwich wall panel structure with bolt connections", Eng. Struct., 278, 115543. https://doi.org/10.1016/j.engstruct.2022.115543.
  26. JG/T 266-2011 (2011), Foamed concrete, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China.
  27. Jin, Z.H., Ma, B.G., Su, Y., Qi, H.H., Lu, W.D. and Zhang, T. (2021), "Preparation of eco-friendly lightweight gypsum: Use of beta-hemihydrate phosphogypsum and expanded polystyrene particles", Constr. Build. Mater., 297, 123837. https://doi.org/10.1016/j.conbuildmat.2021.123837.
  28. Joseph, J.D.R., Prabakar, J. and Alagusundaramoorthy, P. (2019), "Experimental studies on through-thickness shear behavior of EPS based precast concrete sandwich panels with truss shear connectors". Compos. Part B: Eng., 166, 446-456. https://doi.org/10.1016/j.compositesb.2019.02.030.
  29. Kumar, S., Chen, B.Q., Xu, Y.Y. and Dai, J.G. (2021), "Structural behavior of FRP grid reinforced geopolymer concrete sandwich wall panels subjected to concentric axial loading", Compos. Struct., 270, 114117. https://doi.org/10.1016/j.compstruct.2021.114117.
  30. Lameiras, R., Barros, J.A.O., Valente, I.B., Poletti, E., Azevedo M. and Azenha, M. (2021), "Seismic behaviour of precast sandwich wall panels of steel fibre reinforced concrete layers and fibre reinforced polymer connectors", Eng. Struct., 237, 112149. https://doi.org/10.1016/j.engstruct.2021.112149.
  31. Lee, B.J. and Pessiki, S. (2008), "Experimental evaluation of precast, prestressed concrete, three-wythe sandwich wall panels", PCI J., 53(2), 95-115. https://doi.org/10.15554/pcij.03012008.95.115.
  32. Li, W.L., Huang, W., Fang, Y., Zhang, K., Liu, Z.Z., Kong, Z.Y. (2022), "Experimental and theoretical analysis on shear behavior of RC beams reinforced with GFRP stirrups", Structures, 46, 1753-1763. https://doi.org/10.1016/j.istruc.2022.10.138.
  33. Liu, T.W., Shi, G.P., Li, G.Z. and Wang, Z. (2019), "Study on properties of foamed concrete with EPS as coarse aggregate", Mater. Sci. Eng., 490, 032034. https://doi.org/10.1088/1757-899X/490/3/032034.
  34. Martinez-Barrera, G., Menchaca-Campos, C., Hernandez-Lopez, S., Vigueras-Santiago, E. and Brostow, W. (2006), "Concrete reinforced with irradiated nylon fibers", J. Mater. Res., 21(2), 484-491. https://doi.org/10.1557/jmr.2006.0058.
  35. Nikbin, I.M. and Golshekan, M. (2018), "The effect of expanded polystyrene synthetic particles on the fracture parameters, brittleness and mechanical properties of concrete", Theor. Appl. Fract. Mech., 94, 160-172. https://doi.org/10.1016/j.tafmec.2018.02.002.
  36. O'Hegarty, R. and Kinnane, O. (2020), "Review of precast concrete sandwich panels and their innovations", Constr. Build. Mater., 233, 117145. https://doi.org/10.1016/j.conbuildmat.2019.117145.
  37. Pakizeh, M.R., Parastesh, H., Hajirasouliha, I. and Farahbod, F. (2023), "Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology", Steel Compos. Struct., 46(4), 497-512. https://doi.org/10.12989/scs.2023.46.4.497.
  38. Pessiki, S. and Mlynarczyk, A. (2003), "Experimental evaluation of the composite behavior of precast concrete sandwich wall panels", PCI J., 48(2), 54-71. https://doi.org/10.15554/pcij.03012003.54.71.
  39. Prasittisopin, L., Termkhajornkit, P. and Kim, Y.H. (2022). "Review of concrete with expanded polystyrene (EPS): Performance and environmental aspects", J. Clean. Prod., 366, 132919. https://doi.org/10.1016/j.jclepro.2022.132919.
  40. Priyanka, E., Sathyan, D. and Mini, K.M. (2021). "Functional and strength characteristics of EPS beads incorporated foam concrete wall panels", Mater. Today: Proc., 46, 5167-5170. https://doi.org/10.1016/j.matpr.2021.01.592.
  41. Ravindrarajah, R.S. and Tuck, A.J. (1994), "Properties of hardened concrete containing treated expanded polystyrene beads", Cem. Concr. Compos., 16(4), 273-277. https://doi.org/10.1016/0958-9465(94)90039-6.
  42. Rosli, M.F., Rashidi, A., Ahmed, E. and Sarudu, N.H. (2011), "The effect of reinforcement, expanded polystyrene (EPS) and fly ash on the strength of foam concrete", J. Civil Eng., 2(2), 1-7. https://doi.org/10.33736/jcest.88.2011.
  43. Saheed, S., Amran, Y.H.M., El-Zeadani, M., Aziz, F.N.A., Fediuk, R., Alyousef, R. and Alabduljabbar, H. (2021), "Structural behavior of out-of-plane loaded precast lightweight EPS-foam concrete C-shaped slabs", J. Build. Eng., 33, 101597. https://doi.org/10.1016/j.jobe.2020.101597.
  44. Sayadi, A.A., Tapia, J.V., Neitzert, T.R. and Clifton, G.C. (2016), "Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete", Constr. Build. Mater., 112, 716-724. https://doi.org/10.1016/j.conbuildmat.2016.02.218.
  45. Shi, J.Y., Liu, B.J., He, Z.H., Liu, Y.C., Jiang, J.Y., Xiong, T.Y. and Shi, J.W. (2021). "A green ultra-lightweight chemically foamed concrete for building exterior: A feasibility study", J. Clean. Prod., 288, 125085. https://doi.org/10.1016/j.jclepro.2020.125085.
  46. Shi, J.Y., Liu, Y.C., Liu, B.J. and Han, D. (2019), "Temperature effect on the thermal conductivity of expanded polystyrene foamed concrete: Experimental investigation and model correction", Adv. Mater. Sci. Eng., 2019, 1-9. https://doi.org/10.1155/2019/8292379.
  47. Sulong, N.H.R., Mustapa, S.A.S. and Rashid, M.K.A. (2019), "Application of expanded polystyrene (EPS) in buildings and constructions: A review", J. Appl. Polym. Sci., 136, 47529. https://doi.org/10.1002/app.47529.
  48. Tao, Q.L., Niu, B., Guan, Y.Y., Kong, J., Zhang, C.X., Kong Z.Y. (2022), "Experimental and theoretical study on flexural behavior of high strength concrete encased steel beams with steel fibers", Structures, 41, 1359-1368. https://doi.org/10.1016/j.istruc.2022.05.073.
  49. Tao, Q.L., Pei, W.P., Zhang, H., Hu, Y., Qian, Y.D., Wang, Y.T., Kong, Z.Y. (2024), "Experimental study on the bonding performance between shaped Steel and high-strength concrete", Buildings, 14(6), 1639. https://doi.org/10.3390/buildings14061639.
  50. Tomlinson, D. and Fam, A. (2015), "Flexural behavior of precast concrete sandwich wall panels with basalt FRP and steel reinforcement", PCI J., 60(6), 51-71. https://doi.org/10.15554/pcij.11012015.51.71.
  51. Ukanwa, K., Mohamad, N. and Lim, J.B.P. (2015), "Computational finite element modelling of structural behaviours of precast sandwiched foamed concrete slab", Open J. of Civ. Eng., 5, 220-227. https://doi.org/10.4236/ojce.2015.52022.
  52. Vakhshouri, B. (2020), "Structural lightweight concrete containing expanded poly-styrene beads; Engineering properties", Steel Compos. Struct., 34(4), 581-597. https://doi.org/10.12989/scs.2020.34.4.581.
  53. Xu, Y., Tong, S.R., Xu, X., Mao, J.T. Kang, X., Luo, J., Jiang, L. H. and Guo, M.Z. (2023), "Effect of foam stabilization on the properties of foamed concrete modified by expanded polystyrene", J. Build. Eng., 73, 106822. https://doi.org/10.1016/j.jobe.2023.106822.
  54. Yurddaskal, M. and Baba, B.O. (2016), "The effect of curvature on the impact response of foam-based sandwich composite panels", Steel Compos. Struct., 20(5), 983-997. https://doi.org/10.12989/scs.2016.20.5.983.