• 제목/요약/키워드: Long-short term memory(LSTM)

검색결과 522건 처리시간 0.034초

외재적 변수를 이용한 딥러닝 예측 기반의 도시가스 인수량 예측 (Deep Learning Forecast model for City-Gas Acceptance Using Extranoues variable)

  • 김지현;김지은;박상준;박운학
    • 한국가스학회지
    • /
    • 제23권5호
    • /
    • pp.52-58
    • /
    • 2019
  • 본 연구에서는 국내 도시가스 인수량에 대한 예측 모델을 개발하였다. 국내의 도시가스 회사는 KOGAS에 차년도 수요를 예측하여 보고해야 하므로 도시가스 인수량 예측은 도시가스 회사에 중요한 사안이다. 도시가스 사용량에 영향을 미치는 요인은 용도구분에 따라 다소 상이하나, 인수량 데이터는 용도별 구분이 어렵기 때문에 특정 용도에 관계없이 영향을 주는 요인으로 외기온도를 고려하여 모델개발을 실시하였다.실험 및 검증은 JB주식회사의 2008년부터 2018년까지 총 11년 치 도시가스 인수량 데이터를 사용하였으며, 전통적인 시계열 분석 중 하나인 ARIMA(Auto-Regressive Integrated Moving Average)와 딥러닝 기법인 LSTM(Long Short-Term Memory)을 이용하여 각각 예측 모델을 구축하고 두 방법의 단점을 최소화하기 위하여 다양한 앙상블(Ensemble) 기법을 사용하였다. 본 연구에서 제안한 일별 예측의 오차율 절댓값 평균은 Ensemble LSTM 기준 0.48%, 월별 예측의 오차율 절댓값 평균은 2.46%, 1년 예측의 오차율 절댓값 평균은 5.24%임을 확인하였다.

비트코인 가격 예측을 위한 LSTM 모델의 Hyper-parameter 최적화 연구 (A Study on the Hyper-parameter Optimization of Bitcoin Price Prediction LSTM Model)

  • 김준호;성한울
    • 한국융합학회논문지
    • /
    • 제13권4호
    • /
    • pp.17-24
    • /
    • 2022
  • 비트코인은 정부나 금융기관에 의존되어 있지 않은 전자 거래를 지향하며 만들어진 peer-to-peer 방식의 암호화폐이다. 비트코인은 최초 발행 이후 거대한 블록체인 금융 시장을 생성했고, 이에 따라 기계 학습을 이용한 비트코인 가격 데이터를 예측하는 연구들이 활발해졌다. 그러나 기계 학습 연구의 비효율적인 Hyper-parameter 최적화 과정이 연구 진행에 있어 비용적인 측면을 악화시키고 있다. 본 논문은 LSTM(Long Short-Term Memory) 층을 사용하는 비트코인 가격 예측 모델에서 가장 대표적인 Hyper-parameter 중 Timesteps, LSTM 유닛의 수, 그리고 Dropout 비율의 전체 조합을 구성하고 각각의 조합에 대한 예측 성능을 측정하는 실험을 통해 정확한 비트코인 가격 예측을 위한 Hyper-parameter 최적화의 방향성을 분석하고 제시한다.

WRF-Hydro 하천수 예측 개선을 위한 머신러닝 기법의 활용 (Machine Learning Method for Improving WRF-Hydro streamflow prediction)

  • 조경우;최수연;지혜원;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.63-63
    • /
    • 2020
  • 최근 머신러닝 기술의 발전에 따라 비선형 시계열자료에 대한 예측이 가능해졌으며, 기존의 과정기반모형을 대체하여 지하수, 하천수 예측 등 다양한 수문분야에 활용되고 있다. 본 연구에서는 기존의 연구들과 달리 과정기반모형을 이용한 하천수 모의결과를 개선하기 위해 과정기반모형과 결합하는 방식으로 머신러닝 기술을 활용하였다. 머신러닝 기술을 통해 관측값과 모의값 간의 차이를 예측하고 과정기반모형의 모의결과에 반영함으로써 관측값을 정확히 재현할 수 있도록 하는 시스템을 구축하고 평가하였다. 과정기반모형으로는 Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro)을 소양강 유역을 대상으로 구축하였다. 머신러닝 모형으로는 순환 신경망 중 하나인 Long Short-Term Memory (LSTM) 신경망을 이용하여 장기시계열예측이 가능하게 하였다(WRF-Hydro-LSTM). 머신러닝 모형은 2013년부터 2017년까지의 기상자료 및 유입량 잔차를 이용하여 학습시키고, 2018년 기상자료를 이용하여 예상되는 유입량 잔차를 모의하였다. 모의된 잔차를 WRF-Hydro 모의결과에 반영시켜 최종 유입량 모의값을 보정하였다. 또한, 연구에서 제안된 새로운 방법론의 성능을 비교평가하기 위해 머신러닝 단독 모형으로 유입량을 학습 후 모의하였다(LSTM-only). 상관계수와 Nash-Sutcliffe 효율계수(NSE)를 사용해 평가한 결과, LSTM을 이용한 두 방법(WRF-Hydro-LSTM과 LSTM-only) 모두 기존의 과정기반모형(WRF-Hydro-only)에 비해 높은 정확도의 하천수 모의가 가능했으며, PBIAS 지수를 사용하여 평가한 결과, LSTM을 단독으로 사용하였을 때보다 WRF-Hydro와 결합했을 때 더 관측값과 가까운 모의가 가능함을 확인할 수 있었다.

  • PDF

ConvLSTM을 이용한 위성 강수 예측 평가 (Evaluation of satellite precipitation prediction using ConvLSTM)

  • 정성호;레수안히엔;응웬반지앙;최찬울;이기하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.62-62
    • /
    • 2022
  • 홍수 예보를 위한 강우-유출 분석에서 정확한 예측 강우량 정보는 매우 중요한 인자이다. 이에 따라 강우 예측을 위하여 다양한 연구들이 수행되고 있지만 시·공간적으로 비균일한 특성 또는 변동성을 가진 강우를 정확하게 예측하는 것은 여전히 난제이다. 본 연구에서는 딥러닝 기반 ConvLSTM (Convolutinal Long Short-Term Memory) 모형을 사용하여 위성 강수 자료의 단기 예측을 수행하고 그 정확성을 분석하고자 한다. 대상유역은 메콩강 유역이며, 유역 면적이 넓고 강우 관측소의 밀도가 낮아 시·공간적 강우량 추정에 한계가 있으므로 정확한 강우-유출 분석을 위하여 위성 강수 자료의 활용이 요구된다. 현재 TRMM, GSMaP, PERSIANN 등 많은 위성 강수 자료들이 제공되고 있으며, 우선적으로 ConvLSTM 모형의 강수 예측 활용가능성 평가를 위한 입력자료로 가장 보편적으로 활용되는 TRMM_3B42 자료를 선정하였다. 해당 자료의 특성으로 공간해상도는 0.25°, 시간해상도는 일자료이며, 2001년부터 2015년의 자료를 수집하였다. 모형의 평가를 위하여 2001년부터 2013년 자료는 학습, 2014년 자료는 검증, 2015년 자료는 예측에 사용하였다. 또한 민감도 분석을 통하여 ConvLSTM 모형의 최적 매개변수를 추정하고 이를 기반으로 선행시간(lead time) 1일, 2일, 3일의 위성 강수 예측을 수행하였다. 그 결과 선행시간이 길어질수록 그 오차는 증가하지만, 전반적으로 3가지 선행시간 모두 자료의 강수량뿐만 아니라 공간적 분포까지 우수하게 예측되었다. 따라서 2차원 시계열 자료의 특성을 기억하고 이를 예측에 반영할 수 있는 ConvLSTM 모형은 메콩강과 같은 미계측 대유역에서의 안정적인 예측 강수량 정보를 제공할 수 있으며 홍수 예보를 위한 강우-유출 분석에 활용이 가능할 것으로 판단된다.

  • PDF

LSTM 모형과 로지스틱 회귀를 통한 도시 침수 범위의 예측 (Prediction of Urban Flood Extent by LSTM Model and Logistic Regression)

  • 김현일;한건연;이재영
    • 대한토목학회논문집
    • /
    • 제40권3호
    • /
    • pp.273-283
    • /
    • 2020
  • 기후변화의 영향으로 국지성 및 집중호우에 대한 발생 가능성이 높아지는 시점에서 과거에 침수피해를 입은 도시 유역에 대하여 실제 호우에 대한 침수 양상을 예측하는 것은 중요하다. 이에 수치해석 기반 프로그램과 함께 기계학습을 이용한 홍수 분석에 대한 연구가 증가하고 있다. 본 연구에서 적용한 LSTM 신경망은 일련의 자료를 분석하는데 유용하지만, 딥 러닝을 수행하기 위하여 충분한 양의 자료를 필요로 한다. 그러나 단일 도시유역에 홍수를 일으킬 강우가 매년 일어나지 않기에 많은 홍수 자료를 수집하기에는 어려움이 있다. 이에 본 연구에서는 대상 유역에서 관측되는 강우 외에 전국 단위의 실제 호우를 예측 모형에 반영하였다. LSTM (Long Short-Term Memory) 신경망은 강우에 대한 총 월류량을 예측하기 위하여 사용되었으며, 목표값으로 SWMM (Storm Water Management Model)의 유출 모의 결과를 사용하였다. 침수 범위 예측을 위해서는 로지스틱 회귀를 사용하였으며, 로지스틱 회귀 모형의 독립 변수는 총 월류량이며 종속 변수는 격자 별 침수 발생 유무이다. 침수 범위 자료는 SWMM의 유출 결과를 바탕으로 수행된 2차원 침수해석 모의 결과를 통해 수집하였다. LSTM의 매개변수 조건에 따라 총 월류량 예측 결과를 비교하였다. 매개변수 설정에 따른 4가지의 LSTM 모형을 사용하였는데, 검증과 테스트 단계에 대한 평균 RMSE (Root Mean Square Error)는 1.4279 ㎥/s, 1.0079 ㎥/s으로 산정되었다. 최소 RMSE는 검증과 테스트에 대하여 각각 1.1656 ㎥/s, 0.8797㎥/s 으로 산정되었으며, SWMM모의 결과를 적절히 재현할 수 있음을 확인하였다. LSTM 신경망의 결과와 로지스틱 회귀를 연계하여 침수 범위 예측을 수행하였으며, 침수심 0.5m 이상을 고려하였을 때에 최대 침수면적 적합도가 97.33 %으로 나타났다. 본 연구에서 제시된 방법론은 딥 러닝에 기반하여 도시 홍수 대응능력을 향상 시키는데 도움이 될 것으로 판단된다.

순환신경망 모델을 활용한 팔당호의 단기 수질 예측 (Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models)

  • 한지우;조용철;이소영;김상훈;강태구
    • 한국물환경학회지
    • /
    • 제39권1호
    • /
    • pp.46-60
    • /
    • 2023
  • Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change in advance. In this study, we tried to predict the dissolved oxygen (DO), chlorophyll-a, and turbidity of the Paldang reservoir for about two weeks using long short-term memory (LSTM) and gated recurrent units (GRU), which are deep learning algorithms based on recurrent neural networks. The model was built based on real-time water quality data and meteorological data. The observation period was set from July to September in the summer of 2021 (Period 1) and from March to May in the spring of 2022 (Period 2). We tried to select an algorithm with optimal predictive power for each water quality parameter. In addition, to improve the predictive power of the model, an important variable extraction technique using random forest was used to select only the important variables as input variables. In both Periods 1 and 2, the predictive power after extracting important variables was further improved. Except for DO in Period 2, GRU was selected as the best model in all water quality parameters. This methodology can be useful for preventive water quality management by identifying the variability of water quality in advance and predicting water quality in a short period.

기계학습 모형 기반 진해만 용존산소농도 및 빈산소수괴 발생 예측 (Prediction in Dissolved Oxygen Concentration and Occurrence of Hypoxia Water Mass in Jinhae Bay Based on Machine Learning Model)

  • 박성식;김병국;김경회
    • 한국해안·해양공학회논문집
    • /
    • 제34권3호
    • /
    • pp.47-57
    • /
    • 2022
  • 본 연구에서는 진해만의 단일 정점 장기 모니터링 자료를 사용하여 LSTM 모형을 이용한 DO 농도 예측 및 결정 트리 모형을 이용한 빈산소수괴 발생 예측 연구를 수행하였다. LSTM을 이용한 DO 농도 예측 결과, Hidden node의 수가 증가할수록 모형의 복잡도가 증가하여 많은 Epoch을 요구하는 모습을 보였으며, 예측 시간 간격이 증가할수록 긴 Sequence length에서 높은 정확도를 보였다. 결정 트리를 이용한 빈산소수괴 발생 예측 결과, 30 day 예측에서 빈산소수괴 미발생 예측 정확도는 6 6 .1%로 발생 예측 정확도의 37.5%보다 상대적으로 높게 나타났다. 이는 결정 트리 모형이 DO 농도를 관측값보다 고평가하여 나타난 결과로 판단된다.

360 영상으로부터 텍스트 정보를 이용한 자연스러운 사진 생성 (Natural Photography Generation with Text Guidance from Spherical Panorama Image)

  • 김범석;정진웅;홍은빈;조성현;이승용
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권3호
    • /
    • pp.65-75
    • /
    • 2017
  • 360 영상은 상하좌우 모든 영역에 대한 정보를 갖고 있기 때문에 종종 지나치게 많은 정보를 포함하게 된다. 또한 360 영상의 내용을 2D 모니터를 이용하여 확인하기 위해서는 마우스를 이용하여 360 영상을 돌려 봐야 하거나, 또는 심하게 왜곡된 2D 영상으로 변환해서 봐야 하는 문제가 있다. 따라서 360 영상에서 사용자가 원하는 물체를 찾는 것은 상당히 까다로운 일이 될 수 있다. 본 논문은 물체나 영역을 묘사하는 문장이 주어졌을 때, 360 영상 내에서 문장과 가장 잘 어울리는 영상을 추출해 내는 방법을 제시한다. 본 논문에서 제시한 방법은 주어진 문장 뿐 아니라 구도 역시 고려하여 구도 면에서도 보기 좋은 결과 영상을 생성한다. 본 논문에서 제시하는 방법은 우선 360 영상을 2D 큐브맵으로 변환한다. 일반적인 큐브맵은 큐브맵의 경계 부분에 걸쳐 있는 물체가 있을 경우, 이를 검출하기 어려운 문제가 있다. 따라서 더 정확한 물체 검출을 위해 본 논문에서는 변형된 큐브맵을 제시한다. 이렇게 변형된 큐브맵에 Long Short Term Memory (LSTM) 네트워크 기반의 자연어 문장을 이용한 물체 검출 방법을 적용한다. 최종적으로 원래의 360영상에서 검출된 영역을 포함하면서도 영상 구도 면에서 보기 좋은 영역을 찾아서 결과 영상을 생성한다.

전력선통신 시스템을 위한 딥 러닝 기반 전력량 예측 기법 (Power Consumption Prediction Scheme Based on Deep Learning for Powerline Communication Systems)

  • 이동구;김수현;정호철;선영규;심이삭;황유민;김진영
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.822-828
    • /
    • 2018
  • 최근 전력 사용량의 증가로 인한 대규모 블랙아웃 등 에너지 문제가 대두되고 있으며, 이 문제들로 인해 전력 소비량 예측에 대한 정확도를 개선할 필요성이 부각되었다. 본 연구에서는 딥 러닝 기반의 전력 사용량 예측 실험을 통해서 실제 전력 소비량과 예측된 전력 소비량의 차이를 계산하고, 이를 통해서 전력 예비율을 기존 대비 하향 조정할 수 있는 가능성에 대해서 살펴본다. 예비 전력은 사용하지 않으면 손실되는 전력으로, 본 논문에서의 딥 러닝 기반 전력 소비량 예측을 통해서 여분의 전력을 과도하게 생산하지 않도록 오차범위 내에서 전력 예비율을 감소시킬 수 있는 기반을 마련할 수 있다. 본 논문에서 사용하는 딥 러닝 기법은 시계열 데이터를 처리하는 Long-Short-Term-Memory(LSTM) 구조의 학습 모델을 이용한다. 컴퓨터 시뮬레이션에서는 임의 생성한 전력 소비 데이터를 토대로 모델을 학습시키고, 학습된 모델을 토대로 전력 사용 예측값을 구하고 실제 전력 소비량 간에 오차를 계산한 결과 오차율 21.37%를 얻을 수 있었다. 이는 최근의 전력 예비율 45.9%를 고려할 때, 본 연구에서 제안한 전력 소비량 예측 알고리즘을 적용하는 경우 20% 포인트 정도의 예비율 감축이 가능하다.

탄소중립을 향하여: 데이터 센터에서의 효율적인 에너지 운영을 위한 딥러닝 기반 서버 관리 방안 (Towards Carbon-Neutralization: Deep Learning-Based Server Management Method for Efficient Energy Operation in Data Centers)

  • 마상균;박재현;서영석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권4호
    • /
    • pp.149-158
    • /
    • 2023
  • 최근 데이터 활용이 중요해짐에 따라 데이터 센터의 중요도도 함께 높아지고 있다. 하지만 데이터 센터는 막대한 전력을 소모함과 동시에 24시간 가동되는 시설이기 때문에 환경적, 경제적 측면에서 문제가 되고 있다. 최근 딥러닝 기법들을 사용하여 트래픽을 예측하거나, 데이터 센터나 서버에서 사용되는 전력을 줄이는 연구들이 다양한 관점에서 이루어지고 있다. 그러나 서버에서 처리되는 트래픽 데이터양은 변칙적이며 이는 서버를 관리하기 어렵게 만든다. 또한, 서버 상황에 따라 서버를 가변적으로 관리하는 기법에 대한 연구들이 여전히 많이 요구되고 있다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 시계열 데이터 예측에 강세를 보이는 장단기 기억 신경망 (Long-Term Short Memory, LSTM)을 기반으로 한 가변적인 서버 관리 기법을 제안한다. 제안된 모델을 통해 서버에서 사용되는 전력을 보다 효과적으로 줄일 수 있게 되며, 현업환경에서 이전보다 안정적이고 효율적으로 서버를 관리할 수 있게 된다. 제안된 모델의 검증을 위해 위키피디아 (Wikipedia)의 데이터 센터 중 6개의 데이터 센터의 전송 및 수신 트래픽 데이터를 수집한 뒤 통계기반 분석을 통해 각 트래픽 데이터의 관계를 분석 및 실험을 수행하였다. 실험 결과 본 논문에서 제안된 모델의 유의미한 성능을 통계적으로 검증하였으며 서버 관리를 안정적이고 효율적으로 수행할 수 있음을 보여주었다.