본 연구에서는 국내 도시가스 인수량에 대한 예측 모델을 개발하였다. 국내의 도시가스 회사는 KOGAS에 차년도 수요를 예측하여 보고해야 하므로 도시가스 인수량 예측은 도시가스 회사에 중요한 사안이다. 도시가스 사용량에 영향을 미치는 요인은 용도구분에 따라 다소 상이하나, 인수량 데이터는 용도별 구분이 어렵기 때문에 특정 용도에 관계없이 영향을 주는 요인으로 외기온도를 고려하여 모델개발을 실시하였다.실험 및 검증은 JB주식회사의 2008년부터 2018년까지 총 11년 치 도시가스 인수량 데이터를 사용하였으며, 전통적인 시계열 분석 중 하나인 ARIMA(Auto-Regressive Integrated Moving Average)와 딥러닝 기법인 LSTM(Long Short-Term Memory)을 이용하여 각각 예측 모델을 구축하고 두 방법의 단점을 최소화하기 위하여 다양한 앙상블(Ensemble) 기법을 사용하였다. 본 연구에서 제안한 일별 예측의 오차율 절댓값 평균은 Ensemble LSTM 기준 0.48%, 월별 예측의 오차율 절댓값 평균은 2.46%, 1년 예측의 오차율 절댓값 평균은 5.24%임을 확인하였다.
비트코인은 정부나 금융기관에 의존되어 있지 않은 전자 거래를 지향하며 만들어진 peer-to-peer 방식의 암호화폐이다. 비트코인은 최초 발행 이후 거대한 블록체인 금융 시장을 생성했고, 이에 따라 기계 학습을 이용한 비트코인 가격 데이터를 예측하는 연구들이 활발해졌다. 그러나 기계 학습 연구의 비효율적인 Hyper-parameter 최적화 과정이 연구 진행에 있어 비용적인 측면을 악화시키고 있다. 본 논문은 LSTM(Long Short-Term Memory) 층을 사용하는 비트코인 가격 예측 모델에서 가장 대표적인 Hyper-parameter 중 Timesteps, LSTM 유닛의 수, 그리고 Dropout 비율의 전체 조합을 구성하고 각각의 조합에 대한 예측 성능을 측정하는 실험을 통해 정확한 비트코인 가격 예측을 위한 Hyper-parameter 최적화의 방향성을 분석하고 제시한다.
최근 머신러닝 기술의 발전에 따라 비선형 시계열자료에 대한 예측이 가능해졌으며, 기존의 과정기반모형을 대체하여 지하수, 하천수 예측 등 다양한 수문분야에 활용되고 있다. 본 연구에서는 기존의 연구들과 달리 과정기반모형을 이용한 하천수 모의결과를 개선하기 위해 과정기반모형과 결합하는 방식으로 머신러닝 기술을 활용하였다. 머신러닝 기술을 통해 관측값과 모의값 간의 차이를 예측하고 과정기반모형의 모의결과에 반영함으로써 관측값을 정확히 재현할 수 있도록 하는 시스템을 구축하고 평가하였다. 과정기반모형으로는 Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro)을 소양강 유역을 대상으로 구축하였다. 머신러닝 모형으로는 순환 신경망 중 하나인 Long Short-Term Memory (LSTM) 신경망을 이용하여 장기시계열예측이 가능하게 하였다(WRF-Hydro-LSTM). 머신러닝 모형은 2013년부터 2017년까지의 기상자료 및 유입량 잔차를 이용하여 학습시키고, 2018년 기상자료를 이용하여 예상되는 유입량 잔차를 모의하였다. 모의된 잔차를 WRF-Hydro 모의결과에 반영시켜 최종 유입량 모의값을 보정하였다. 또한, 연구에서 제안된 새로운 방법론의 성능을 비교평가하기 위해 머신러닝 단독 모형으로 유입량을 학습 후 모의하였다(LSTM-only). 상관계수와 Nash-Sutcliffe 효율계수(NSE)를 사용해 평가한 결과, LSTM을 이용한 두 방법(WRF-Hydro-LSTM과 LSTM-only) 모두 기존의 과정기반모형(WRF-Hydro-only)에 비해 높은 정확도의 하천수 모의가 가능했으며, PBIAS 지수를 사용하여 평가한 결과, LSTM을 단독으로 사용하였을 때보다 WRF-Hydro와 결합했을 때 더 관측값과 가까운 모의가 가능함을 확인할 수 있었다.
홍수 예보를 위한 강우-유출 분석에서 정확한 예측 강우량 정보는 매우 중요한 인자이다. 이에 따라 강우 예측을 위하여 다양한 연구들이 수행되고 있지만 시·공간적으로 비균일한 특성 또는 변동성을 가진 강우를 정확하게 예측하는 것은 여전히 난제이다. 본 연구에서는 딥러닝 기반 ConvLSTM (Convolutinal Long Short-Term Memory) 모형을 사용하여 위성 강수 자료의 단기 예측을 수행하고 그 정확성을 분석하고자 한다. 대상유역은 메콩강 유역이며, 유역 면적이 넓고 강우 관측소의 밀도가 낮아 시·공간적 강우량 추정에 한계가 있으므로 정확한 강우-유출 분석을 위하여 위성 강수 자료의 활용이 요구된다. 현재 TRMM, GSMaP, PERSIANN 등 많은 위성 강수 자료들이 제공되고 있으며, 우선적으로 ConvLSTM 모형의 강수 예측 활용가능성 평가를 위한 입력자료로 가장 보편적으로 활용되는 TRMM_3B42 자료를 선정하였다. 해당 자료의 특성으로 공간해상도는 0.25°, 시간해상도는 일자료이며, 2001년부터 2015년의 자료를 수집하였다. 모형의 평가를 위하여 2001년부터 2013년 자료는 학습, 2014년 자료는 검증, 2015년 자료는 예측에 사용하였다. 또한 민감도 분석을 통하여 ConvLSTM 모형의 최적 매개변수를 추정하고 이를 기반으로 선행시간(lead time) 1일, 2일, 3일의 위성 강수 예측을 수행하였다. 그 결과 선행시간이 길어질수록 그 오차는 증가하지만, 전반적으로 3가지 선행시간 모두 자료의 강수량뿐만 아니라 공간적 분포까지 우수하게 예측되었다. 따라서 2차원 시계열 자료의 특성을 기억하고 이를 예측에 반영할 수 있는 ConvLSTM 모형은 메콩강과 같은 미계측 대유역에서의 안정적인 예측 강수량 정보를 제공할 수 있으며 홍수 예보를 위한 강우-유출 분석에 활용이 가능할 것으로 판단된다.
기후변화의 영향으로 국지성 및 집중호우에 대한 발생 가능성이 높아지는 시점에서 과거에 침수피해를 입은 도시 유역에 대하여 실제 호우에 대한 침수 양상을 예측하는 것은 중요하다. 이에 수치해석 기반 프로그램과 함께 기계학습을 이용한 홍수 분석에 대한 연구가 증가하고 있다. 본 연구에서 적용한 LSTM 신경망은 일련의 자료를 분석하는데 유용하지만, 딥 러닝을 수행하기 위하여 충분한 양의 자료를 필요로 한다. 그러나 단일 도시유역에 홍수를 일으킬 강우가 매년 일어나지 않기에 많은 홍수 자료를 수집하기에는 어려움이 있다. 이에 본 연구에서는 대상 유역에서 관측되는 강우 외에 전국 단위의 실제 호우를 예측 모형에 반영하였다. LSTM (Long Short-Term Memory) 신경망은 강우에 대한 총 월류량을 예측하기 위하여 사용되었으며, 목표값으로 SWMM (Storm Water Management Model)의 유출 모의 결과를 사용하였다. 침수 범위 예측을 위해서는 로지스틱 회귀를 사용하였으며, 로지스틱 회귀 모형의 독립 변수는 총 월류량이며 종속 변수는 격자 별 침수 발생 유무이다. 침수 범위 자료는 SWMM의 유출 결과를 바탕으로 수행된 2차원 침수해석 모의 결과를 통해 수집하였다. LSTM의 매개변수 조건에 따라 총 월류량 예측 결과를 비교하였다. 매개변수 설정에 따른 4가지의 LSTM 모형을 사용하였는데, 검증과 테스트 단계에 대한 평균 RMSE (Root Mean Square Error)는 1.4279 ㎥/s, 1.0079 ㎥/s으로 산정되었다. 최소 RMSE는 검증과 테스트에 대하여 각각 1.1656 ㎥/s, 0.8797㎥/s 으로 산정되었으며, SWMM모의 결과를 적절히 재현할 수 있음을 확인하였다. LSTM 신경망의 결과와 로지스틱 회귀를 연계하여 침수 범위 예측을 수행하였으며, 침수심 0.5m 이상을 고려하였을 때에 최대 침수면적 적합도가 97.33 %으로 나타났다. 본 연구에서 제시된 방법론은 딥 러닝에 기반하여 도시 홍수 대응능력을 향상 시키는데 도움이 될 것으로 판단된다.
Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change in advance. In this study, we tried to predict the dissolved oxygen (DO), chlorophyll-a, and turbidity of the Paldang reservoir for about two weeks using long short-term memory (LSTM) and gated recurrent units (GRU), which are deep learning algorithms based on recurrent neural networks. The model was built based on real-time water quality data and meteorological data. The observation period was set from July to September in the summer of 2021 (Period 1) and from March to May in the spring of 2022 (Period 2). We tried to select an algorithm with optimal predictive power for each water quality parameter. In addition, to improve the predictive power of the model, an important variable extraction technique using random forest was used to select only the important variables as input variables. In both Periods 1 and 2, the predictive power after extracting important variables was further improved. Except for DO in Period 2, GRU was selected as the best model in all water quality parameters. This methodology can be useful for preventive water quality management by identifying the variability of water quality in advance and predicting water quality in a short period.
본 연구에서는 진해만의 단일 정점 장기 모니터링 자료를 사용하여 LSTM 모형을 이용한 DO 농도 예측 및 결정 트리 모형을 이용한 빈산소수괴 발생 예측 연구를 수행하였다. LSTM을 이용한 DO 농도 예측 결과, Hidden node의 수가 증가할수록 모형의 복잡도가 증가하여 많은 Epoch을 요구하는 모습을 보였으며, 예측 시간 간격이 증가할수록 긴 Sequence length에서 높은 정확도를 보였다. 결정 트리를 이용한 빈산소수괴 발생 예측 결과, 30 day 예측에서 빈산소수괴 미발생 예측 정확도는 6 6 .1%로 발생 예측 정확도의 37.5%보다 상대적으로 높게 나타났다. 이는 결정 트리 모형이 DO 농도를 관측값보다 고평가하여 나타난 결과로 판단된다.
360 영상은 상하좌우 모든 영역에 대한 정보를 갖고 있기 때문에 종종 지나치게 많은 정보를 포함하게 된다. 또한 360 영상의 내용을 2D 모니터를 이용하여 확인하기 위해서는 마우스를 이용하여 360 영상을 돌려 봐야 하거나, 또는 심하게 왜곡된 2D 영상으로 변환해서 봐야 하는 문제가 있다. 따라서 360 영상에서 사용자가 원하는 물체를 찾는 것은 상당히 까다로운 일이 될 수 있다. 본 논문은 물체나 영역을 묘사하는 문장이 주어졌을 때, 360 영상 내에서 문장과 가장 잘 어울리는 영상을 추출해 내는 방법을 제시한다. 본 논문에서 제시한 방법은 주어진 문장 뿐 아니라 구도 역시 고려하여 구도 면에서도 보기 좋은 결과 영상을 생성한다. 본 논문에서 제시하는 방법은 우선 360 영상을 2D 큐브맵으로 변환한다. 일반적인 큐브맵은 큐브맵의 경계 부분에 걸쳐 있는 물체가 있을 경우, 이를 검출하기 어려운 문제가 있다. 따라서 더 정확한 물체 검출을 위해 본 논문에서는 변형된 큐브맵을 제시한다. 이렇게 변형된 큐브맵에 Long Short Term Memory (LSTM) 네트워크 기반의 자연어 문장을 이용한 물체 검출 방법을 적용한다. 최종적으로 원래의 360영상에서 검출된 영역을 포함하면서도 영상 구도 면에서 보기 좋은 영역을 찾아서 결과 영상을 생성한다.
최근 전력 사용량의 증가로 인한 대규모 블랙아웃 등 에너지 문제가 대두되고 있으며, 이 문제들로 인해 전력 소비량 예측에 대한 정확도를 개선할 필요성이 부각되었다. 본 연구에서는 딥 러닝 기반의 전력 사용량 예측 실험을 통해서 실제 전력 소비량과 예측된 전력 소비량의 차이를 계산하고, 이를 통해서 전력 예비율을 기존 대비 하향 조정할 수 있는 가능성에 대해서 살펴본다. 예비 전력은 사용하지 않으면 손실되는 전력으로, 본 논문에서의 딥 러닝 기반 전력 소비량 예측을 통해서 여분의 전력을 과도하게 생산하지 않도록 오차범위 내에서 전력 예비율을 감소시킬 수 있는 기반을 마련할 수 있다. 본 논문에서 사용하는 딥 러닝 기법은 시계열 데이터를 처리하는 Long-Short-Term-Memory(LSTM) 구조의 학습 모델을 이용한다. 컴퓨터 시뮬레이션에서는 임의 생성한 전력 소비 데이터를 토대로 모델을 학습시키고, 학습된 모델을 토대로 전력 사용 예측값을 구하고 실제 전력 소비량 간에 오차를 계산한 결과 오차율 21.37%를 얻을 수 있었다. 이는 최근의 전력 예비율 45.9%를 고려할 때, 본 연구에서 제안한 전력 소비량 예측 알고리즘을 적용하는 경우 20% 포인트 정도의 예비율 감축이 가능하다.
최근 데이터 활용이 중요해짐에 따라 데이터 센터의 중요도도 함께 높아지고 있다. 하지만 데이터 센터는 막대한 전력을 소모함과 동시에 24시간 가동되는 시설이기 때문에 환경적, 경제적 측면에서 문제가 되고 있다. 최근 딥러닝 기법들을 사용하여 트래픽을 예측하거나, 데이터 센터나 서버에서 사용되는 전력을 줄이는 연구들이 다양한 관점에서 이루어지고 있다. 그러나 서버에서 처리되는 트래픽 데이터양은 변칙적이며 이는 서버를 관리하기 어렵게 만든다. 또한, 서버 상황에 따라 서버를 가변적으로 관리하는 기법에 대한 연구들이 여전히 많이 요구되고 있다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 시계열 데이터 예측에 강세를 보이는 장단기 기억 신경망 (Long-Term Short Memory, LSTM)을 기반으로 한 가변적인 서버 관리 기법을 제안한다. 제안된 모델을 통해 서버에서 사용되는 전력을 보다 효과적으로 줄일 수 있게 되며, 현업환경에서 이전보다 안정적이고 효율적으로 서버를 관리할 수 있게 된다. 제안된 모델의 검증을 위해 위키피디아 (Wikipedia)의 데이터 센터 중 6개의 데이터 센터의 전송 및 수신 트래픽 데이터를 수집한 뒤 통계기반 분석을 통해 각 트래픽 데이터의 관계를 분석 및 실험을 수행하였다. 실험 결과 본 논문에서 제안된 모델의 유의미한 성능을 통계적으로 검증하였으며 서버 관리를 안정적이고 효율적으로 수행할 수 있음을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.