DOI QR코드

DOI QR Code

Prediction in Dissolved Oxygen Concentration and Occurrence of Hypoxia Water Mass in Jinhae Bay Based on Machine Learning Model

기계학습 모형 기반 진해만 용존산소농도 및 빈산소수괴 발생 예측

  • Park, Seongsik (Department of Ocean Engineering, Pukyong National University) ;
  • Kim, Byeong Kuk (Tongyeong Terminal Division, Korea Gas Corporation) ;
  • Kim, Kyunghoi (Department of Ocean Engineering, Pukyong National University)
  • 박성식 (부경대학교 해양공학과) ;
  • 김병국 (한국가스공사 안전환경부) ;
  • 김경회 (부경대학교 해양공학과)
  • Received : 2022.04.28
  • Accepted : 2022.06.07
  • Published : 2022.06.30

Abstract

We carried out studies on prediction in concentration of dissolved oxygen (DO) with LSTM model and prediction in occurrence of hypoxia water mass (HWM) with decision tree. As results of study on prediction in DO concentration, a large number of Hidden node caused high complexity of model and required enough Epoch. And it was high accuracy in long Sequence length as prediction time step increased. The results of prediction in occurrence of HWM showed that the accuracy of nonHWM case was 66.1% in 30 day prediction, it was higher than 37.5% of HWM case. The reason is that the decision tree might overestimate DO concentration.

본 연구에서는 진해만의 단일 정점 장기 모니터링 자료를 사용하여 LSTM 모형을 이용한 DO 농도 예측 및 결정 트리 모형을 이용한 빈산소수괴 발생 예측 연구를 수행하였다. LSTM을 이용한 DO 농도 예측 결과, Hidden node의 수가 증가할수록 모형의 복잡도가 증가하여 많은 Epoch을 요구하는 모습을 보였으며, 예측 시간 간격이 증가할수록 긴 Sequence length에서 높은 정확도를 보였다. 결정 트리를 이용한 빈산소수괴 발생 예측 결과, 30 day 예측에서 빈산소수괴 미발생 예측 정확도는 6 6 .1%로 발생 예측 정확도의 37.5%보다 상대적으로 높게 나타났다. 이는 결정 트리 모형이 DO 농도를 관측값보다 고평가하여 나타난 결과로 판단된다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(Grant 2021R1I1A30603741261782064340102).

References

  1. Breitburg, D., Levin, L.A., Oschlies, A., Gregoire, M., Chavez, F.P., Conley, D.J., Garcon, V., Gilbert, D., Gutierrez, D., Isensee, K., Jacinto, G.S., Limburg, K.E., Montes, I., Naqvi, S.W.A., Pitcher, G.C., Rabalais, N.N., Roman, M.R., Rose, K.A., Seibel, B.A., Telszewski, M., Yasuhara, M. and Zhang, J. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359 (6371).
  2. Baden, S.P., Loo, L.O., Pihl, L. and Rosenberg, R. (1990). Effects of eutrophication on benthic communities including fish: Swedish west coast. AMBIO A Journal of the Human Environment, 13(3), 113-122.
  3. Dupond, S. (2019). A thorough review on the current advance of neural network structures. Annual Reviews in Control, 14, 200-230.
  4. Li, Q., Xang, X., Wang, J. and Zhou, Y. (2021a). Prediction of dissolved oxygen content in water based on EEMD-Pearson and LSTM hybrid models. Earth and Environmental Science, 760(1).
  5. Li, W., Wu, H., Zhu, N., Jiang, Y., Tan, J. and Guo, Y. (2021b). Prediction of dissolved oxygen in a fishery pond based on gated recurrent unit (GRU). Information Processing in Agriculture, 8(1), 185-193. https://doi.org/10.1016/j.inpa.2020.02.002
  6. Lim, H., An, H., Choi, E. and Kim, Y. (2020). Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea. Korean Journal of Agricultural Science, 47, 1029-1037 (in Korean). https://doi.org/10.7744/KJOAS.20200086
  7. NIFS (National Institute of Fisheries Science) (2022). real-time marine environment fishing ground information system, https://www.nifs.go.kr/risa/main.risa (in Korean).
  8. Park, S. and Kim, K. (2021). Prediction of DO concentration in nakdong river estuary through case study based on long short term memory model. Journal of Korean Society of Coastal and Ocean Engineers, 33(6), 1-8 (in Korean). https://doi.org/10.9765/KSCOE.2021.33.1.1
  9. Pearson, T.H. and Rosenberg, R. (1978). Macrobenthic succession on relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology, 16, 229-311.
  10. Tealab, A. (2018). Time series forecasting using artificial neural networks methodologies: A systematic review. Future Computing and Informatics Journal, 3(2), 334-340. https://doi.org/10.1016/j.fcij.2018.10.003
  11. Yin, K., Lin, Z. and Ke, Z. (2004). Temporal and spatial distribution of dissolved oxygen in the Pearl River Estuary and adjacent coastal waters. Continental Shelf Research, 24(16), 1935-1948. https://doi.org/10.1016/j.csr.2004.06.017