• 제목/요약/키워드: Long-lived fission products

검색결과 11건 처리시간 0.023초

中共 核實驗에 의한 서울地區의 放射線 汚染度 評價 (Radioactivity Originating from the Chinese Nuclear Test Explosions Observed in Seoul District in 1964-1967)

  • Kang, Man-Sik
    • 한국동물학회지
    • /
    • 제11권3호
    • /
    • pp.85-91
    • /
    • 1968
  • 1963年에서 1967年에 걸쳐 서울地區의 人工放射能과 自然放射能을 全放射能의 測定과 放射性核種의 分析을 통하여 硏究하였다. 核分裂生成物의 濃度가 적을때는 \ulcorner은 半減期를 갖는 라듐이나 토리음의 崩壞生成物이 浮游塵의 大部分을 차지하고 있었으며 核分裂生成物에 依한 放射能은 試料 採取후 며칠 지나야 正確히 評價할수 있었다. 7次에 걸친 中共의 核實驗의 結果 두차례의 强放射能이 爆發후 30時間을 前後하여 서울地區에 나타났으며 이들은 1956年에서 1962年 사이에 美國과 蘇聯에서 행한 實驗과 比較할 때 높은 比放射能을 보였으나 持續時間은 아주 짧아서 1週內에 急激히 減少하였다. 이로 보아서 서울地區의 放射能汚染은 中共의 核實驗인 境遇 核實驗의 規模와 實驗高度 및 爆發前後의 氣象條件, 特히 高層對流圈의 제트氣流에 依해서 많은 影響을 받음을 알았다.

  • PDF

표적물질 및 중성자 스펙트럼이 99Tc과 129I의 원자로 내부 핵변환에 미치는 영향 (Effect of Target Material and the Neutron Spectrum on Nuclear Transmutation of 99Tc and 129I in Nuclear Reactors)

  • 강승구;이현철
    • 방사성폐기물학회지
    • /
    • 제16권2호
    • /
    • pp.195-202
    • /
    • 2018
  • 원칙적으로, 지층 처분은 고준위 방사성 폐기물의 최종 처분을 위한 안전한 방법으로 간주된다. 그러나 사용후핵연료에 함유된 $^{99}Tc$$^{129}I$와 같은 일부 장수명 핵분열 생성물은 지하 환경에서 흡수성이 적은 음이온 핵종으로 이동성이 매우 크며 수백 keV 범위의 베타선 방출로 생태계에 피폭선량을 야기시킬 수 있다. 따라서 이 두 핵종을 효율적으로 분리하여 방사능으로 유해하지 않은 핵종으로 전환할 수 있다면 처분 안정성에 긍정적인 영향을 줄 수 있다. 이를 위한 하나의 방법은 이 두 가지 핵종을 원자로에서 수명이 짧은 핵종 또는 안정적인 핵종으로 변환하는 것이다. 이를 위해 두 핵종을 태우는 데 어느 원자로 유형이 더 효율적인지 평가하는 것이 필요하다. 본 연구에서는 경수로(PWR), 중수로(CANDU) 및 고속로(SFR, MET-1000)의 $^{99}Tc$$^{129}I$의 핵 변환 시뮬레이션 결과를 비교하고 고찰하였다.

SIGNIFICANCE OF ACTINIDE CHEMISTRY FOR THE LONG-TERM SAFETY OF WASTE DISPOSAL

  • Kim, Jae-Il
    • Nuclear Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.459-482
    • /
    • 2006
  • A geochemical approach to the long-term safety of waste disposal is discussed in connection with the significance of actinides, which shall deliver the major radioactivity inventory subsequent to the relatively short-term decay of fission products. Every power reactor generates transuranic (TRU) elements: plutonium and minor actinides (Np, Am, Cm), which consist chiefly of long-lived nuclides emitting alpha radiation. The amount of TRU actinides generated in a fuel life period is found to be relatively small (about 1 wt% or less in spent fuel) but their radioactivity persists many hundred thousands years. Geological confinement of waste containing TRU actinides demands, as a result, fundamental knowledge on the geochemical behavior of actinides in the repository environment for a long period of time. Appraisal of the scientific progress in this subject area is the main objective of the present paper. Following the introductory discussion on natural radioactivities, the nuclear fuel cycle is briefly brought up with reference to actinide generation and waste disposal. As the long-term disposal safety concerns inevitably with actinides, the significance of the aquatic actinide chemistry is summarized in two parts: the fundamental properties relevant to their aquatic behavior and the geochemical reactions in nanoscopic scale. The constrained space of writing allows discussion on some examples only, for which topics of the primary concern are selected, e.g. apparent solubility and colloid generation, colloid-facilitated migration, notable speciation of such processes, etc. Discussion is summed up to end with how to make a geochemical approach available for the long-term disposal safety of nuclear waste or for the performance assessment (PA) as known generally.

Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

  • Kim, Wonkyeong;Lee, Hyun Chul;Pyeon, Cheol Ho;Shin, Ho Cheol;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.304-317
    • /
    • 2016
  • An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcrofte-Walton type accelerator, which generates the external neutron source by deuteriu-metritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

Preliminary Corrosion Model in Isothermal Pb and LBE Flow Loops

  • Lee, Sung Ho;Cho, Choon Ho;Song, Tae Yung
    • Corrosion Science and Technology
    • /
    • 제5권6호
    • /
    • pp.201-205
    • /
    • 2006
  • HYPER(Hybrid Power Extraction Reactor) is the accelerator driven subcritical transmutation system developed by KAERI(Korea Atomic Research Institute). HYPER is designed to transmute long-lived transuranic actinides and fission products such as Tc-99 and I-129. Liquid lead-bismuth eutectic (LBE). Has been a primary candidate for coolant and spallation neutron target due to its appropriate thermal-physical and chemical properties, However, it is very corrosive to the common steels used in nuclear installations at high temperature. This corrosion problem is one of the main factors considered to set the upper limits of temperature and velocity of HYPER system. In this study, a parametric study for a corrosion model was performed. And a preliminary corrosion model was also developed to predict the corrosion rate in isothermal Pb and LBE flow loops.

여과지전기영동법(濾過紙電氣泳動法)에 의한 장수명(長壽命) 핵분열(核分裂) 생성물분리(生成物分離) (Paper Electrophoretic Separation of Some Long-Lived Fission Products)

  • 이병헌;이종두
    • Journal of Radiation Protection and Research
    • /
    • 제8권2호
    • /
    • pp.15-35
    • /
    • 1983
  • 특별히 제작한 영동장치를 써서 고전압 전기영동법에 의하여 24시간 중성자 조사하고 150일 냉각한 90% 농축질산우라닐 수용액의 핵분열 생성물을 분리하였다. 핵분열생성물부터 Zr-95, Nb-95의 분리는 0.1M-$HClO_4$(pH=0.85), 0.05M-HCl+0.09M-KCl(pH=0.9), 0.1M-HCl(pH=1.1), 0.01M-HCl(pH=2.0)의 이동조건에서 가능하며 Zr-95, Nb-95는 원점부터 +1cm의 거리에서 분리된다. Zr-95와 Nb-95의 상호분리는 2% 수산암모늄을 첨가하는 경우 가능하다. 즉 0.1M-$HClO_4$, 0.05M-HCl+0.09M-KCl, 0.1M-HCl, 0.1M-식초산+0.1M- 식초산나트륨(pH=4.68)의 이동조건에서 원점부터 $-6{\sim}-7cm$ 거리에서 Nb-95, $+1{\sim}-1cm$ 거리에서 Zr-95가 각각 분리된다. 핵분열생성물부터 Ru-103의 분리는 0.025M-$Na_2CO_3+0.025M-NaHCO_3(pH=10.0)$, $0.01M-Na_3PO_4(pH=11.7)$, 0.1M-NaOH(pH=13.2)의 이동조건에서 가능하며 Ru-103는 각각 원점부터 -6cm, -4cm, -3cm거리 이동한다.

  • PDF

제오라이트에 대한 세슘-137, 세슘-144 및 코발트-60 흡착거동 (Sorption Behavior of Cesium-137, Cerium-144 and Cobalt-60 on Zeolites)

  • 김석철;이병헌
    • Journal of Radiation Protection and Research
    • /
    • 제10권1호
    • /
    • pp.3-13
    • /
    • 1985
  • 주요 핵분열 생성물인 세슘-137, 장수명 핵종과 세륨-144, 희토류원소 그리고 부식 생성물인 코발트-60등의 제올라이트 A, 제올라이트 F-9(Faujasite) 그리고 비정형 제올라이트에 대한 흡착거동을 염농도 0.01 M부터 2.0 M 질산과 질산암모늄 그리고 교반시간 15분부터 90분까지 15분 간격으로 검토하였다. Kd 값은 Batch 실험방법으로 구했다. 결론으로 주요핵종의 분리 제거의 최적조건은 비정질 제올라이트, 0.01 M-질산과 0.1 M-질산암모늄, pH 4, 교반시간 한시간 그리고 가장 효율높은 핵종은 세슘 -137이다.

  • PDF

WASTE CLASSIFICATION OF 17×17 KOFA SPENT FUEL ASSEMBLY HARDWARE

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Jong-Won;Choi, Heui-Joo
    • Nuclear Engineering and Technology
    • /
    • 제43권2호
    • /
    • pp.149-158
    • /
    • 2011
  • Metal waste generated from the pyroprocessing of 10 MtU of spent fuel was classified by comparing the specific activity of a relevant radionuclide with the limit value of the specific activity specified in the Korean acceptance criteria for a lowand intermediate-level waste repository. A Korean Optimized Fuel Assembly design with a 17${\times}$17 array, an initial enrichment of 4.5 weight-percent, discharge burn-up of 55 GWD/MtU, and a 10-year cooling time was considered. Initially, the mass and volume of each structural component of the assembly were calculated in detail, and a source term analysis was subsequently performed using ORIGEN-S for these components. An activation cross-section library generated by the KENO-VI/ORIGEN-S module was utilized for top-end and bottom-end pieces. As a result, an Inconel grid plate, a SUS plenum spring, a SUS guide tube subpart, SUS top-end and bottom-end pieces, and an Inconel top-end leaf spring were determined to be unacceptable for the Gyeongju low- and intermediate-level waste repository, as these waste products exceeded the acceptance criteria. In contrast, a Zircaloy grid plate and guide tube can be placed in the Gyeongju repository. Non-contaminated Zircaloy cladding occupying 76% of the metal waste was found to have a lower level of specific activity than the limit value. However, Zircaloy cladding contaminated by fission products and actinides during the decladding process of pyroprocessing was revealed to have 52 and 2 times higher specific activity levels than the limit values for alpha and $^{90}Sr$, respectively. Finally, it was found that 88.7% of the metal waste from the 17${\times}$17 Korean Optimized Fuel Assembly design should be disposed of in a deep geological repository. Therefore, it can be summarized that separation technology with a higher decontamination factor for transuranics and strontium should be developed for the efficient management of metal waste resulting from pyroprocessing.

RECYCLING OPTION SEARCH FOR A 600-MWE SODIUM-COOLED TRANSMUTATION FAST REACTOR

  • LEE, YONG KYO;KIM, MYUNG HYUN
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.47-58
    • /
    • 2015
  • Four recycling scenarios involving pyroprocessing of spent fuel (SF) have been investigated for a 600-MWe transmutation sodium-cooled fast reactor (SFR), KALIMER. Performance evaluation was done with code system REBUS connected with TRANSX and TWODANT. Scenario Number 1 is the pyroprocessing of Canada deuterium uranium (CANDU) SF. Because the recycling of CANDU SF does not have any safety problems, the CANDU-Pyro-SFR system will be possible if the pyroprocessing capacity is large enough. Scenario Number 2 is a feasibility test of feed SF from a pressurized water reactor PWR. Thefsensitivity of cooling time before prior to pyro-processing was studied. As the cooling time sensitivity of cooling time before prior to pyro-processing was studied. As the cooling time increases, excess reactivity at the beginning of the equilibrium cycle (BOEC) decreases, thereby creating advantageous reactivity control and improving the transmutation performance of minor actinides. Scenario Number 3 is a case study for various levels of recovery factors of transuranic isotopes (TRUs). If long-lived fission products can be separated during pyroprocessing, the waste that is not recovered is classified as low- and intermediate-level waste, and it is sufficient to be disposed of in an underground site due to very low-heat-generation rate when the waste cooling time becomes >300 years at a TRU recovery factor of 99.9%. Scenario Number 4 is a case study for the recovery factor of rare earth (RE) isotopes. The RE isotope recovery factor should be lowered to ${\leq}20%$ in order to make sodium void reactivity less than <7$, which is the design limit of a metal fuel.

A Preliminary Design Concept of the HYPER System

  • Park, Won S.;Tae Y. Song;Lee, Byoung O.;Park, Chang K.
    • Nuclear Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.42-59
    • /
    • 2002
  • In order to transmute long-lived radioactive nuclides such as transuranics(TRU), Tc-99, and I- l29 in LWR spent fuel, a preliminary conceptual design study has been performed for the accelerator driven subcritical reactor system, called HYPER(Hybrid Power Extraction Reactor) The core has a hybrid neutron energy spectrum: fast and thermal neutrons for the transmutation of TRU and fission products, respectively. TRU is loaded into the HYPER core as a TRU-Zr metal form because a metal type fuel has very good compatibility with the pyre- chemical process which retains the self-protection of transuranics at all times. On the other hand, Tc-99 and I-129 are loaded as pure technetium metal and sodium iodide, respectively. Pb-Bi is chosen as a primary coolant because Pb-Bi can be a good spallation target and produce a very hard neutron energy spectrum. As a result, the HYPER system does not have any independent spallation target system. 9Cr-2WVTa is used as a window material because an advanced ferritic/martensitic steel is known to have a good performance under a highly corrosive and radiation environment. The support ratios of the HYPER system are about 4∼5 for TRU, Tc-99, and I-129. Therefore, a radiologically clean nuclear power, i.e. zero net production of TRU, Tc-99 and I-129 can be achieved by combining 4 ∼5 LWRs with one HYPER system. In addition, the HYPER system, having good proliferation resistance and high nuclear waste transmutation capability, is believed to provide a breakthrough to the spent fuel problems the nuclear industry is faced with.