DOI QR코드

DOI QR Code

Effect of Target Material and the Neutron Spectrum on Nuclear Transmutation of 99Tc and 129I in Nuclear Reactors

표적물질 및 중성자 스펙트럼이 99Tc과 129I의 원자로 내부 핵변환에 미치는 영향

  • 투고 : 2018.03.05
  • 심사 : 2018.06.07
  • 발행 : 2018.06.29

초록

As a rule, geological disposal is considered a safe method for final disposal of high-level radioactive waste. However, some long-lived fission products like $^{99}Tc$ and $^{129}I$ contained in spent nuclear fuel are highly mobile as less sorbing anionic species in the subsurface environment and can mainly cause exposure dose to the ecosystem by emission of beta rays in the hundreds of keV range. Therefore, if these two nuclides can be separated and converted with high efficiency into radioactively unharmful nuclides, this would have a positive effect on disposal safety. One candidate method is to transmute these two nuclides in nuclear reactors into short-lived nuclides or into stable nuclides. For this purpose, it is necessary to evaluate which reactor type is more efficient in burning these two nuclides. In this study, the simulation results of nuclear transmutation of $^{99}Tc$ and $^{129}I$ in light water reactor (PWR), heavy water reactor (CANDU) and fast neutron reactor (SFR, MET-1000) are compared and discussed.

원칙적으로, 지층 처분은 고준위 방사성 폐기물의 최종 처분을 위한 안전한 방법으로 간주된다. 그러나 사용후핵연료에 함유된 $^{99}Tc$$^{129}I$와 같은 일부 장수명 핵분열 생성물은 지하 환경에서 흡수성이 적은 음이온 핵종으로 이동성이 매우 크며 수백 keV 범위의 베타선 방출로 생태계에 피폭선량을 야기시킬 수 있다. 따라서 이 두 핵종을 효율적으로 분리하여 방사능으로 유해하지 않은 핵종으로 전환할 수 있다면 처분 안정성에 긍정적인 영향을 줄 수 있다. 이를 위한 하나의 방법은 이 두 가지 핵종을 원자로에서 수명이 짧은 핵종 또는 안정적인 핵종으로 변환하는 것이다. 이를 위해 두 핵종을 태우는 데 어느 원자로 유형이 더 효율적인지 평가하는 것이 필요하다. 본 연구에서는 경수로(PWR), 중수로(CANDU) 및 고속로(SFR, MET-1000)의 $^{99}Tc$$^{129}I$의 핵 변환 시뮬레이션 결과를 비교하고 고찰하였다.

키워드

참고문헌

  1. K. Liu, H. Wu, L. Cao, Y. Zheng, and C. Wang, "A code development for LLFP transmutation analysis based on the whole pin-wise calculation in PWRs", Nuclear Engineering and Design, 256, 56-66 (2013). https://doi.org/10.1016/j.nucengdes.2012.11.014
  2. H.J. Shim, B.S. Han, J.S. Jung, H.J. Park, and C.H. Kim, "McCARD: monte carlo code for advanced reactor design and analysis", Nuclear Engineering and Technology, 44(2), 161-176 (2012). https://doi.org/10.5516/NET.01.2012.503
  3. M.B. Chadwick, P. Obložinský, M. Herman, N.M. Greene, R.D. McKnight, et al., "ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology", Nuclear Data Sheets, 107(12), 2931-3060 (2006). https://doi.org/10.1016/j.nds.2006.11.001
  4. K. Liu, H. Wu, L. Cao, and Y. Zheng, "Studies on LLFP transmutation in a pressurized water reactor", Journal of Nuclear Science and Technology, 50, 581-598 (2013). https://doi.org/10.1080/00223131.2013.785278
  5. Korea Hydro & Nuclear Power Co. LTD., April 11 2011. "Status Report 103 - Advanced Power Reactor (APR 1000)" Advanced Reactor Information System Database (International Atomic Energy Agency). Accessed Dec. 30 2017. Available from: https://aris.iaea.org/PDF/APR1000.pdf.
  6. Korea Hydro & Nuclear Power Co. LTD., Design Manual, CANDU 6 Generating Station Physics Design Manual, Wolsong NPP 1, 59RF-03310-DM-000 Revision 0 (2009).
  7. Candu Energy Inc., Enhanced CANDU 6 Technical Summary, Candu Energy Inc. Press, Mississauga (2012).
  8. W. Bernnat, D. Blanchet, E. Brun, L. Buiron, E.Fridman, et al., Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes, Nuclear Energy Agency Technical Report, NEA/NSC/R (2015)9 (2016).
  9. T.K. KIM, W.S. Yang, C. Grandy, and R.N. Hill, "Core Design Studies for a 1000 MWth Advanced Burner Reactor", Annals of Nuclear Energy, 36(3), 331-336 (2009). https://doi.org/10.1016/j.anucene.2008.12.021
  10. K.H. Yoon, H.S. Lee, H.K. Kim, and J.S. Cheon, "Mechanical Design Evaluation of Fuel Assembly for PGSFR", Proc. of Int. Conf. on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development(FR17), IAEA-CN 245-017, IAEA, Vienna (2017).
  11. J. Yoo, J. Chang, J.Y. Lim, J.S. Cheon, T.H. Lee, S.K. Kim, K.L. Lee, and H.K. Joo, "Overall System Description and Safety Characteristics of Prototype Gen IV Sodium Cooled Faster Reactor in Korea", Nuclear Engineering and Technology, 48, 1059-1070 (2016). https://doi.org/10.1016/j.net.2016.08.004