• 제목/요약/키워드: Long terminal repeat

검색결과 37건 처리시간 0.023초

Enhancer Function of MicroRNA-3681 Derived from Long Terminal Repeats Represses the Activity of Variable Number Tandem Repeats in the 3' UTR of SHISA7

  • Lee, Hee-Eun;Park, Sang-Je;Huh, Jae-Won;Imai, Hiroo;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • 제43권7호
    • /
    • pp.607-618
    • /
    • 2020
  • microRNAs (miRNAs) are non-coding RNA molecules involved in the regulation of gene expression. miRNAs inhibit gene expression by binding to the 3' untranslated region (UTR) of their target gene. miRNAs can originate from transposable elements (TEs), which comprise approximately half of the eukaryotic genome and one type of TE, called the long terminal repeat (LTR) is found in class of retrotransposons. Amongst the miRNAs derived from LTR, hsa-miR-3681 was chosen and analyzed using bioinformatics tools and experimental analysis. Studies on hsa-miR-3681 have been scarce and this study provides the relative expression analysis of hsa-miR-3681-5p from humans, chimpanzees, crab-eating monkeys, and mice. Luciferase assay for hsa-miR-3681-5p and its target gene SHISA7 supports our hypothesis that the number of miRNA binding sites affects target gene expression. Especially, the variable number tandem repeat (VNTR) and hsa-miR-3681-5p share the binding sites in the 3' UTR of SHISA7, which leads the enhancer function of hsamiR-3681-5p to inhibit the activity of VNTR. In conclusion, hsa-miR-3681-5p acts as a super-enhancer and the enhancer function of hsa-miR-3681-5p acts as a repressor of VNTR activity in the 3' UTR of SHISA7.

Identification and Phylogenetic Analysis of Long Terminal Repeat Elements of the Human Endogenous Retrovirus K Family (HERV-K) from a Human Brain cDNA Library

  • Kim, Heui-Soo;Lee, Young-Choon
    • Animal cells and systems
    • /
    • 제5권2호
    • /
    • pp.133-137
    • /
    • 2001
  • Long terminal repeats (LTRs) of the human endogenous retrovirus K family (HERV-K) have been found to be coexpressed with sequences of genes closely located nearby. We examined transcribed HERV-K LTR elements in human brain tissue. Using cDNA synthesized from mRNA of the human brain, we performed PCR amplification and identified ten HERV-K LTR elements. These LTR elements showed a high degree of sequence similarity (92.4-99.7%) with the human-specific LTR elements. A phylogenetic tree obtained by the neighbor-joining method revealed that HERV-K LTR elements could be divided into two groups through evolutionary divergence. Some HERV-K LTR elements (HKL-B7, HKL-B8, HKL-B10) belonging to the group II from human brain cDNA were closely related to the human-specific HERV-K LTR elements. Our data suggest that HERV-K LTR element are active in the human brain; they could conceivably play a pathogenic role in human diseases such as psychosis.

  • PDF

Z-DNA-Containing Long Terminal Repeats of Human Endogenous Retrovirus Families Provide Alternative Promoters for Human Functional Genes

  • Lee, Du Hyeong;Bae, Woo Hyeon;Ha, Hongseok;Park, Eun Gyung;Lee, Yun Ju;Kim, Woo Ryung;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • 제45권8호
    • /
    • pp.522-530
    • /
    • 2022
  • Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.

Insertional Mutation of the Rice Blast Resistance Gene, Pi-b, by Long Terminal Repeat of a Retrotransposon

  • Jwa, Nam-Soo;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제16권2호
    • /
    • pp.105-109
    • /
    • 2000
  • The Pi-b is the rice gene conferring race specific resistance to the blast fungus Magnaporthe grisea race having a corresponding avirulence gene, AVR-Pi-b. All resistant cultivars have two copies of the Pi-b gene, but susceptible cultivars have a single copy of the gene. About 1 Kbp insertion sequence was detected in the open reading frame of the Pi-b gene from the susceptible cv. Nipponbare. The nature of insertion sequence was identified as a solo long terminal repeat (LTR) of new rice Tyl-copia-like retrotransposon. LTR was widely distributed in the rice genome. Various types of different patterns of restriction fragment length polymorphism of LTR were detected in indica cultivars, whereas a single type was detected from japonica cultivars. The insertion of LTR sequence in the Pi-b gene in the susceptible cultivar suggested that retrotransposon-mediated insertional mutation might played an important role in the resistance breakdown as well as evolution of resistance genes in rice.

  • PDF

Divergent long-terminal-repeat retrotransposon families in the genome of Paragonimus westermani

  • Bae, Young-An;Kong, Yoon
    • Parasites, Hosts and Diseases
    • /
    • 제41권4호
    • /
    • pp.221-231
    • /
    • 2003
  • To gain information on retrotransposons in the genome of Paragonimus westermani, PCR was carried out with degenerate primers, specific to protease and reverse transcriptase (rt) genes of long-terminal-repeat (LTR) retrotransposons. The PCR products were cloned and sequenced, after which 12 different retrotransposon-related sequences were isolated from the trematode genome. These showed various degrees of identity to the polyprotein of divergent retrotransposon families. A phylogenetic analysis demonstrated that these sequences could be classified into three different families of LTR retrotransposons, namely, Xena, Bel, and Gypsy families. Of these, two mRNA transcripts were detected by reverse transcriptase-PCR, showing that these two elements preserved their mobile activities. The genomic distributions of these two sequences were found to be highly repetitive. These results suggest that there are diverse retrotransposons including the ancient Xena family in the genome of P. westermani, which may have been involved in the evolution of the host genome.

Promoter Activity of the Long Terminal Repeats of Porcine Endogenous Retroviruses of the Korean Domestic Pig

  • Ha, Hong-Seok;Huh, Jae-Won;Kim, Dae-Soo;Kang, Dong-Woo;Cho, Byung-Wook;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.148-151
    • /
    • 2007
  • Porcine endogenous retroviruses (PERVs) in the pig genome represent a potential risk of infection in pig-to-human transplantation and are transmitted vertically. The solitary long terminal repeat (LTR) elements of the PERVs affect the replication properties of the individual viruses via their repeat sequences and by encoding a set of specific transcription factors. We examined the promoter activities of solitary LTR elements belonging to the PERV-A and -B families of the Korean domestic pig (KDP) using luciferase reporters. Three of the LTR structures (of PERV-A5-KDP, PERV-A7-KDP, PERV-A8-KDP) had different promoter activities in human HCT116 cells and monkey Cos7 cells, and potential negatively and positively acting regions affecting transcription were identified by deletion analysis. These data suggest that specific sequences in the U3 region of a given LTR element can affect the activities of promoter or enhancer elements in the PERV.

인간 Papillomavirus의 E6, E7 유전자를 이용한 Transgenic Mouse의 확립 (Establishment of Transgenic Mouse with the E6 and E7 Genes of Human Papillomavirus Type 16)

  • 황용일;이승일;김현수
    • 대한바이러스학회지
    • /
    • 제26권1호
    • /
    • pp.115-120
    • /
    • 1996
  • Human papillomavirus (HPV), especially type 16 and 18, has been closely associated with carcinomas and uterine cevical cancer, recently. From in vitro assays, E6 and E7 genes of HPV16 are closely linked with transformation of cell lines of rodent fibroplasts. However, the transforming activity of E6 and E7 genes of HPV type 16 in vivo has not been fully elucidated. For explaining this mechanism, we prepared a expression system with the promoter of mouse mammary tumorvirus long terminal repeat and E6E7's open reading frames. This expression system was introduced in rodent cell lines, No. 7, 3Y1 and shown normal transforming abilities. And, we produced transgenic mice with E6, E7 expression system. These transgenic mice were confirmed from Southern blot analysis. One male of them was observed enlargement of the testis after 5 months postdelivery.

  • PDF

Investigation of Deletion Variation and Methylation Patterns in the 5' LTR of Porcine Endogenous Retroviruses

  • Jung, K.C.;Simond, D.M.;Moran, C.;Hawthorne, W.J.;Jeon, J.T.;Jin, D.I.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권11호
    • /
    • pp.1572-1575
    • /
    • 2008
  • The xenotransplantation of pig organs and cells can be related with a risk of transmission of infectious diseases to human. Previous findings indicate that the regulatory region of PERV for retroviral transcription, replication and integration into the cellular DNA is located on the 5' Long Terminal Repeat (LTR). The objective of this study is the investigation of methylation and deletion status of the PERV 5' LTR region which can be used for regulating PERV expression. We compared the sequences of genomic DNA and bisulfite-treated genomic DNA from PK-15 cells expressing PERV to observe the methylation status of the 5' LTR. Our results showed that the CpG sites of U3 were methylated and methylation was inconsistent in the R and U5 regions. Also, variable numbers of 18 bp repeats and 21 bp repeats were detected on 5' LTR by sequencing analysis. The consistent U3 methylation might be indicative of host suppression of expression of the retroviruses.

Characterization of Prototype Foamy Virus Infectivity in Transportin 3 Knockdown Human 293t Cell Line

  • Hamid, Faysal Bin;Kim, Jinsun;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.380-387
    • /
    • 2017
  • The foamy viruses are currently considered essential for development as vectors for gene delivery. Previous studies demonstrated that prototype foamy virus (PFV) can infect and replicate prevalently in a variety of cell types for its exclusive replication strategy. However, the virus-host interaction, especially PFV-transportin3 (TNPO3), is still poorly understood. In our investigation of the role of TNPO3 in PFV infection, we found lower virus production in TNPO3 knockdown (KD) cells compared with wild-type 293T cells. PCR analysis revealed that viral DNAs were mostly altered to circular forms: both 1-long terminal repeat (1-LTR) and 2-LTR in TNPO3 KD cells. We therefore suggest that TNPO3 is required for successful PFV replication, at least at/after the nuclear entry step of viral DNA. These findings highlight the obscure mysteries of PFV-host interaction and the requirement of TNPO3 for productive infection of PFV in 293T cells.

Evolutionary course of CsRn1 long-terminal-repeat retrotransposon and its heterogeneous integrations into the genome of the liver fluke, Clonorchis sinensis

  • Bae, Young-An;Kong, Yoon
    • Parasites, Hosts and Diseases
    • /
    • 제41권4호
    • /
    • pp.209-219
    • /
    • 2003
  • The evolutionary course of the CsRn1 long-terminal-repeat (LTR) retrotransposon was predicted by conducting a phylogenetic analysis with its paralog LTR sequences. Based on the clustering patterns in the phylogenetic tree, multiple CsRn1 copies could be grouped into four subsets, which were shown to have different integration times. Their differential sequence divergences and heterogeneous integration patterns strongly suggested that these subsets appeared sequentially in the genome of C. sinensis. Members of recently expanding subset showed the lowest level of divergence in their L TR and reverse transcriptase gene sequences. They were also shown to be highly polymorphic among individual genomes of the trematode. The CsRn1 element exhibited a preference for repetitive, agenic chromosomal regions in terms of selecting integration targets. Our results suggested that CsRn1 might induce a considerable degree of intergenomic variation and, thereby, have influenced the evolution of the C. sinensis genome.