• 제목/요약/키워드: Long short time memory

검색결과 295건 처리시간 0.029초

Bi-LSTM model with time distribution for bandwidth prediction in mobile networks

  • Hyeonji Lee;Yoohwa Kang;Minju Gwak;Donghyeok An
    • ETRI Journal
    • /
    • 제46권2호
    • /
    • pp.205-217
    • /
    • 2024
  • We propose a bandwidth prediction approach based on deep learning. The approach is intended to accurately predict the bandwidth of various types of mobile networks. We first use a machine learning technique, namely, the gradient boosting algorithm, to recognize the connected mobile network. Second, we apply a handover detection algorithm based on network recognition to account for vertical handover that causes the bandwidth variance. Third, as the communication performance offered by 3G, 4G, and 5G networks varies, we suggest a bidirectional long short-term memory model with time distribution for bandwidth prediction per network. To increase the prediction accuracy, pretraining and fine-tuning are applied for each type of network. We use a dataset collected at University College Cork for network recognition, handover detection, and bandwidth prediction. The performance evaluation indicates that the handover detection algorithm achieves 88.5% accuracy, and the bandwidth prediction model achieves a high accuracy, with a root-mean-square error of only 2.12%.

LSTM을 이용한 탄천에서의 시간별 하천수위 모의 (Hourly Water Level Simulation in Tancheon River Using an LSTM)

  • 박창언
    • 한국농공학회논문집
    • /
    • 제66권4호
    • /
    • pp.51-57
    • /
    • 2024
  • This study was conducted on how to simulate runoff, which was done using existing physical models, using an LSTM (Long Short-Term Memory) model based on deep learning. Tancheon, the first tributary of the Han River, was selected as the target area for the model application. To apply the model, one water level observatory and four rainfall observatories were selected, and hourly data from 2020 to 2023 were collected to apply the model. River water level of the outlet of the Tancheon basin was simulated by inputting precipitation data from four rainfall observation stations in the basin and average preceding 72-hour precipitation data for each hour. As a result of water level simulation using 2021 to 2023 data for learning and testing with 2020 data, it was confirmed that reliable simulation results were produced through appropriate learning steps, reaching a certain mean absolute error in a short period time. Despite the short data period, it was found that the mean absolute percentage error was 0.5544~0.6226%, showing an accuracy of over 99.4%. As a result of comparing the simulated and observed values of the rapidly changing river water level during a specific heavy rain period, the coefficient of determination was found to be 0.9754 and 0.9884. It was determined that the performance of LSTM, which aims to simulate river water levels, could be improved by including preceding precipitation in the input data and using precipitation data from various rainfall observation stations within the basin.

카드산업에서 휴면 고객 예측 (Prediction of Dormant Customer in the Card Industry)

  • 이동규;신민수
    • 서비스연구
    • /
    • 제13권2호
    • /
    • pp.99-113
    • /
    • 2023
  • 고객 기반의 산업에서 고객 Retention은 기업의 경쟁력이라 할 수 있으며, 고객 Retention을 높이는 것은 기업의 경쟁력을 높이는 것이라 할 수 있다. 따라서, 미래 휴면 고객을 잘 예측하여 관리하는 것은 기업의 경쟁력을 높이는데 무엇보다 중요하다. 왜냐하면, 신규 고객을 유치하는데 필요한 비용이 기존 고객을 Lock-in 시키는데 드는 비용 보다 많은 것으로 알려져 있기 때문이다. 특히, 수 많은 카드사가 존재하는 국내 카드 산업의 휴면 카드를 관리하고자 정부에서 휴면 카드 자동 해지 제도를 도입하고 있으며, 카드 산업에서 휴면 고객을 관리하는 것이 무엇보다 중요한 과제로 떠오르고 있다. 본 연구에서는 카드 산업에서 휴면 고객을 예측하기 위해 Recurrent Neural Network (RNN)방법론을 사용하였으며, RNN방법론 중에서 긴 시간을 효율적으로 학습할 수 있는 Long-Short Term Memory (LSTM)을 활용하였다. 또한, 통합기술수용이론 (UTAUT)을 입각하여 카드 산업에서 휴면 고객을 예측하는데 필요한 변수를 재정의하였다. 그 결과 안정된 모형의 정확도와 F-1 score를 얻을 수 있었으며, Hit-Ratio를 통하여 모형의 안정된 결과를 입증하였다. 기존 연구에서 지적된 통합기술수용이론 (UTAUT)에서 발생 될 수 있는 인구통계학적 정보의 조절 효과도 발생 되지 않은 것을 보였으며, 이로 인해 통합기술수용이론(UTAUT)를 이용한 변수 선정 모형에서 LSTM을 이용한 휴면 고객 예측 모형은 편향되지 않고 안정된 결과를 가져다 줄 수 있다는 것을 입증하였다.

주성분 분석 기법을 활용한 시계열 데이터 분석 및 예측 시스템 (Time Series Data Analysis and Prediction System Using PCA)

  • 진영훈;지세현;한군희
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.99-107
    • /
    • 2021
  • 우리는 무수히 많은 데이터 속에서 살고 있다. 다양한 데이터는 우리가 활동하는 모든 상황 속에서 만들어지는데 빅데이터 기술을 통해 데이터의 유의미를 발굴한다. 유의미한 데이터를 발굴하기 위해 많은 노력이 진행 중이다. 본 논문은 주성분 분석(Principal component analysis) 기법으로 시계열 데이터의 추이 및 예측을 통해 인간이 더 나은 선택을 가능케 하는 분석 기법을 소개한다. 주성분 분석은 입력된 데이터를 통해 공분산을 구성하고, 데이터의 방향성을 추론할 수 있는 고유벡터와 고윳값을 제시한다. 제안하는 방법은 비슷한 방향성을 갖는 시계열 데이터 집합에서 기준 축을 구성하고, 데이터 집합을 이루는 각 시계열 데이터들의 방향성이 기준 축과 이루는 사잇각을 통해 다음 구간에 존재하게 될 데이터의 방향성을 예측한다. 본 논문에서는 가상화폐의 추이를 통해 제시한 알고리즘의 정확도를 LSTM(Long Short-Term Memory)과 비교 검증한다. 비교/검증 결과 제안된 방법은 변동성이 큰 데이터에서 LSTM에 비해 상대적으로 적은 트랜잭션과 높은 수익(112%)을 기록하였다. 이는 상대적으로 정확하게 신호를 분석하여 예측했다는 의미로 볼 수 있으며, 보다 정확한 임계치 설정을 통해 더 나은 결과를 도출할 수 있을 것으로 기대된다.

실내 사람 위치 추적 기반 LSTM 모델을 이용한 고객 혼잡 예측 연구 (An Approach Using LSTM Model to Forecasting Customer Congestion Based on Indoor Human Tracking)

  • 채희주;곽경헌;이다연;김은경
    • 한국시뮬레이션학회논문지
    • /
    • 제32권3호
    • /
    • pp.43-53
    • /
    • 2023
  • 본 연구는 실내 상업적 공간, 특히 카페에서 보안 카메라를 이용해 방문자 수와 위치를 실시간으로 파악하고, 이를 통해 사용 가능한 좌석 정보와 혼잡도 예측을 제공하는 시스템의 개발을 목표로 한다. 우리는 실시간 객체 탐지 및 추적 알고리즘인 YOLO를 활용하여 방문자 수와 위치를 실시간으로 파악하며, 이 정보를 카페 실내 지도에 업데이트하여 카페 방문자가 사용 가능한 좌석을 확인할 수 있도록 한다. 또한, 우리는 vanishing gradient문제를 해결한 장단기 메모리(Long Short Term Memory, LSTM)와 시간적인 관계를 가지는 데이터를 처리하는데 유용한 시퀀스-투-시퀀스(Sequence-to-Sequence, Seq2Seq)기법을 활용해 다양한 시간 간격에 따른 방문자 수와 움직임 패턴을 학습하고, 이를 바탕으로 카페의 혼잡도를 실시간으로 예측하는 시스템을 개발하였다. 이 시스템은 카페의 관리자와 이용자 모두에게 예상 혼잡도를 제공함으로써, 카페의 운영 효율성을 향상시키고, 고객 만족도를 높일 수 있다. 본 연구에서는 보안 카메라를 활용한 실내 위치 추적 기술의 효용성을 입증하며, 상업적 공간에서의 활용 가능성과 더불어 미래 연구 방향을 제시한다.

가중치 손실 함수를 가지는 순환 컨볼루션 신경망 기반 주가 예측 (A Stock Price Prediction Based on Recurrent Convolution Neural Network with Weighted Loss Function)

  • 김현진;정연승
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권3호
    • /
    • pp.123-128
    • /
    • 2019
  • 본 논문에서는 RCNN (recurrent convolution neural network) 계층 모델을 채택한 인공 지능에 기반을 둔 주가 예측을 제안한다. LSTM (long-term memory model) 기반 신경망은 시계열 데이터의 예측에 사용된다. 다른 한편, 컨볼루션 신경망은 데이터 필터링, 평균화 및 데이터 확장을 제공한다. 제안된 주가 예측에서는 위에서 언급 한 장점들을 RCNN 모델에서 결합하여 적용함으로써 다음날의 주가 종가를 예측한다. 그리고 최근의 시계열의 데이터를 강조하기 위해 커스텀 가중치 손실 함수가 채택되었다. 또한 시장의 상황을 반영하기 위해 주가 인덱스에 관련된 데이터를 입력으로 포함하였다. 제안된 주가 예측 방식은 실제 주가를 대상으로 한 실험에서 3.19%로 테스트 오차를 줄였으며, 다른 방법보다 약 19%의 성능 향상을 거둘 수 있었다.

시계열 분해 및 데이터 증강 기법 활용 건화물운임지수 예측 (Forecasting Baltic Dry Index by Implementing Time-Series Decomposition and Data Augmentation Techniques)

  • 한민수;유성진
    • 품질경영학회지
    • /
    • 제50권4호
    • /
    • pp.701-716
    • /
    • 2022
  • Purpose: This study aims to predict the dry cargo transportation market economy. The subject of this study is the BDI (Baltic Dry Index) time-series, an index representing the dry cargo transport market. Methods: In order to increase the accuracy of the BDI time-series, we have pre-processed the original time-series via time-series decomposition and data augmentation techniques and have used them for ANN learning. The ANN algorithms used are Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) to compare and analyze the case of learning and predicting by applying time-series decomposition and data augmentation techniques. The forecast period aims to make short-term predictions at the time of t+1. The period to be studied is from '22. 01. 07 to '22. 08. 26. Results: Only for the case of the MAPE (Mean Absolute Percentage Error) indicator, all ANN models used in the research has resulted in higher accuracy (1.422% on average) in multivariate prediction. Although it is not a remarkable improvement in prediction accuracy compared to uni-variate prediction results, it can be said that the improvement in ANN prediction performance has been achieved by utilizing time-series decomposition and data augmentation techniques that were significant and targeted throughout this study. Conclusion: Nevertheless, due to the nature of ANN, additional performance improvements can be expected according to the adjustment of the hyper-parameter. Therefore, it is necessary to try various applications of multiple learning algorithms and ANN optimization techniques. Such an approach would help solve problems with a small number of available data, such as the rapidly changing business environment or the current shipping market.

An efficient metaheuristic for multi-level reliability optimization problem in electronic systems of the ship

  • Jang, Kil-Woong;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권8호
    • /
    • pp.1004-1009
    • /
    • 2014
  • The redundancy allocation problem has usually considered only the component redundancy at the lowest-level for the enhancement of system reliability. A system can be functionally decomposed into system, module, and component levels. Modular redundancy can be more effective than component redundancy at the lowest-level because in modular systems, duplicating a module composed of several components can be easier, and requires less time and skill. We consider a multi-level redundancy allocation problem in which all cases of redundancy for system, module, and component levels are considered. A tabu search of memory-based mechanisms that balances intensification with diversification via the short-term and long-term memory is proposed for its solution. To the best of our knowledge, this is the first attempt to use a tabu search for this problem. Our tabu search algorithm is compared with the previous genetic algorithm for the problem on the new composed test problems as well as the benchmark problems from the literature. Computational results show that the proposed method outstandingly outperforms the genetic algorithm for almost all test problems.

로봇 손의 힘 조절을 위한 생물학적 감각-운동 협응 (Sensory Motor Coordination System for Robotic Grasping)

  • 김태형;김태선;수동성;이종호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권2호
    • /
    • pp.127-134
    • /
    • 2004
  • In this paper, human motor behaving model based sensory motor coordination(SMC) algorithm is implemented on robotic grasping task. Compare to conventional SMC models which connect sensor to motor directly, the proposed method used biologically inspired human behaving system in conjunction with SMC algorithm for fast grasping force control of robot arm. To characterize various grasping objects, pressure sensors on hand gripper were used. Measured sensory data are simultaneously transferred to perceptual mechanism(PM) and long term memory(LTM), and then the sensory information is forwarded to the fastest channel among several information-processing flows in human motor system. In this model, two motor learning routes are proposed. One of the route uses PM and the other uses short term memory(STM) and LTM structure. Through motor learning procedure, successful information is transferred from STM to LTM. Also, LTM data are used for next moor plan as reference information. STM is designed to single layered perception neural network to generate fast motor plan and receive required data which comes from LTM. Experimental results showed that proposed method can control of the grasping force adaptable to various shapes and types of greasing objects, and also it showed quicker grasping-behavior lumining time compare to simple feedback system.

진주시 도시재생사업지표 결정에 영향을 미치는 요인 도출 - 집단기억 이론을 중심으로 - (The Factors Influencing the Determination of a Business Indicators for Urban Regeneration Based on Jinju City - Focused on collective memory theory -)

  • 이소영;주희선
    • 한국농촌건축학회논문집
    • /
    • 제21권4호
    • /
    • pp.17-24
    • /
    • 2019
  • It has been long time since the local small-and-medium cities had lost their vitality due to the progress of aging, economic decline in urban areas, the lack of new growth engines, and the declining population in korea. In addition, since the implementation of the local self-governing system, the creation of new urban areas and the transfer of the administrative institutions to the outskirts of a city have accelerated the decline of old downtown. Rather, local small-and-medium cities would have a problem to make urban regeneration impossible. Under the recognition of such problems, individual self-governing entities have come up with numerous policies and implemented various policies for the revitalization of local small-and-medium cities, but it is a condition that the effect of their efforts falls shorts of expectations, such as the space of the similar style, which has been widespread in developed countries, simple restoration, and a few structural changes. In this regard, the part to be realized anew is to enhance the attractiveness of small-and-medium cities. However, is not possible to raise the overall attractiveness in a short time in reality. To select local assets to be utilized in urban regeneration, it is judged that gathering opinions of local residents is more important than any other thing. Accordingly, this study intends to present positive outcome for the purpose of the revitalization of local small-and-medium cities by finding the factors which can remind us of the collective memory of Jinju city and selection the critical factors to determine a detailed project plan from the perspective of urban regeneration.