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Abstract: The redundancy allocation problem  has usually considered only the component redundancy at the lowest-level for the 

enhancement of system reliability. A system can be functionally decomposed into system, module, and component levels. 

Modular redundancy can be more effective  than component redundancy at the lowest-level because in modular systems, 

duplicating a module composed of several components can be easier, and requires less time and skill. We consider a 

multi-level redundancy allocation problem in which all cases of redundancy for system, module, and component levels are 

considered. A tabu search of memory-based mechanisms that balances intensification with diversification via the short-term and 

long-term memory is proposed for its solution. To the best of our knowledge, this is the first attempt to use a tabu search for 

this problem. Our tabu search algorithm is compared with the previous genetic algorithm for the problem on the new composed 

test problems as well as the benchmark problems from the literature. Computational results show that the proposed method 

outstandingly outperforms the genetic algorithm for almost all test problems.
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Acronyms

RAP Redundancy allocation problem
MRAP Multi-level RAP
GA Genetic algorithm
TS Tabu search 
ACO Ant colony optimization
SA Simulated annealing 
VNS Variable neighborhood search
PSO Particle swarm optimization
HM Hybrid metaheuristic
TSMRAP Our tabu search for MRAP

  

             

Nomenclature

n The number of basic items

m The number of constraints



The number of redundancy allocated to the 

ith basic item
 The system reliability    
 The penalty function of the system reliability
 The jth constraint function
ri The reliability of  the ith basic item
ci  The cost of  the ith basic item
bj The amount of allowable resource i

il  The lower bound of ix  

iu  The upper bound of  ix

 1.  Introduction

Reliability is considered to be one of most important design 

measures in various systems. Suppose that we want to max-

imize the system reliability by allocating redundancy units un-

der constraints on cost, volume, weight and other variables in 

the system design phase. In addition, we have various in-

formation to components, parts, some modules and sub-systems 

which can be used to design our system. The basic problem is 

that it is difficult to satisfy the required system reliability with 

basic modules and components. Thus, we should consider re-

dundant units to improve system reliability as a parallel 

structure. Redundancy allocation has been used mainly to en-

hance system reliability. The RAP ([1][2]) which involves se-

lecting redundancy levels at each subsystem in order to max-

imize system reliability under several resource constraints, is a 

well-known combinatorial optimization problem. The problem 

arises frequently in system designs such as semi-conductor in-

tegrated circuits, nanotechnology, and most electronic systems 

of the ship. The RAP has various system structures such as ser-

ies, series-parallel, complex network, k-out-of-n, and so on [3]. 

In this paper, we restrict ourselves to series-parallel system. 

Solutions for the series-parallel RAP have been suggested by 

many authors. Fyffe et al. [4] originally set up the problem and 
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suggested a solution algorithm utilizing a dynamic programming 

approach. Nakagawa and Miyazaki [5] developed 33 variations 

of Fyffe’s problem, where the weight constraint varied its value 

from 159 to 191. Coit & Liu [6] proposed zero-one integer pro-

gramming for small size of problems. They constrained the sol-

ution space so that only the identical component type can be al-

lowed for each subsystem. On the contrary, Coit & Smith [7] 

extended Fyffe’s problem in such a way that the parallel system 

could be more flexible. They allowed a mixing of component 

types within a subsystem and employed a GA to obtain optimal 

solutions. Better solutions have been presented by TS 

(Kulturel-Konak et al. [8][9]), ACO (Liang & Smith [10]), VNS 

(Liang & Chern [11]), and HM (Nahas et al. [12], Ouzineb et 

al. [13]). The above all metaheuristics proposed for only best 

solutions for 14-subsystem  problems without referring to their 

global optimal solutions. However, Kim & Kim [14] suggested 

the global optimal solutions for these problems by the trans-

formation of binary integer programming, and also showed that 

all solutions suggested by TS [9] for the 14-subsystem prob-

lems were the global optimum. For lager problems with up to 

56-subsystem, Bae et al. [15]  proprosed SA as a solution 

method and compared metaheuristics with global optimal 

solutions. 

In the meanwhile, Yun & Kim [16] proposed a new kind of 

RAP, that is, MRAP. The traditional RAP is to consider only 

the component redundancy at the lowest-level. MRAP is to con-

sider all cases of the redundancy for system, module, and com-

ponent levels. A system can be functionally decomposed into 

system, module, and component levels. Modular redundancy can 

be more effective (see Boland & EL-Neweihi [17]) than com-

ponent redundancy at the lowest-level because in modular sys-

tems, duplicating a module composed of several components 

can be easier, and requires less time and skill, than duplicating 

each component. Therefore the lower the level of the redundant 

item and the more spare parts added, the higher the cost of 

redundancy. Kumar et al. [18] studied a similar problem in 

which more complex structures are also included and proposed 

a hierarchical GA. Yun et al. [19] considered the extended 

problem (multiple MRAP) and proposed a GA. Kim & Jang 

[20] proposed a modified tabu search for the RAP of complex 

systems.

In this paper, we consider a MRAP in which all cases of re-

dundancy for system, module, and component levels are 

considered. A TSMRAP of memory based mechanisms that bal-

ances intensification with diversification via the short-term and 

long-term memory is proposed for its solution. To the best of 

our knowledge, this is the first attempt to use a TS for MRAP. 

Our TSMRAP is compared with the previous GA [16] for 

MRAP on the new composed test problems as well as the 

benchmark problems from the literature. Computational results 

show that the TSMRAP outstandingly outperforms the GA for 

almost all test problems.

This paper is organized as follows. In Section 2, we explain 

the formulation of the presented model. The developed meta-

heuristic method, TSMRAP, is illustrated in Section 3. An ex-

ample of MRAP’s superior solution to the traditional RAP is 

studied and computational results from several numerical ex-

periments are discussed in Section 4. We conclude in Section 5 

with some suggestions for further research.

2. Problem formulation

In MRAP, the number of available redundancy structure in-

creases exponentially as the size of problem becomes large. In 

this paper, two assumptions are set up to exclude impossible re-

dundancy structures (Yun et al. [19]).

Assumptions: 

1) The combination of the basic items for redundancy should 

satisfy the function at the system level. If a basic item is used, 

all its sibling items should be used or its function should be 

satisfied by corresponding child items.

2) The basic items for redundancy should be used in parallel 

at one combination.

The problem objective is to maximize system reliability, 

 , given constraints on the system, only for system cost in 

this paper. The system is configured as a series-parallel system. 

The MRAP optimization model can be generally formulated as 

the following nonlinear integer programming problem:

(P)  Maximize  

    subject to   ≤ bj   for j=1, 2, …, m            

                   li ≤   ≤ u

  is a positive integer for i =1, 2, …, n.      

This problem was proven to be a NP-hard problem (Chern 

[21]). We refer interested readers to Yun & Kim [16] for the 

detailed formulation of MRAP.

3. TS algorithm                    

 In this paper, we propose a TS called the TSMRAP which 

is based on the TS [8] algorithm for the series-parallel RAP. 

3.1 The general steps of TSMRAP    

The steps of TSMRAP can be briefly expressed as follows:
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Step 0: Generate random initial feasible solutions.

Step 1: Explore all possibilities of the neighborhood through the 

defined move methods.

Step 2: If the best solution of the step 1 is in the tabu list and 

is not better than the current best, then repeat Step 1 

to find the next best. Otherwise, select the solution as 

the next best move.

Step 3: If the stopping criterion is satisfied, then stop. 

Otherwise, go to Step 1.

3.2 Random initial solutions

The initial solutions of TSMRAP are randomly generated, and 

the scheme of randomly constructing the initial solutions is near-

ly identical to the general scheme, except that it allows either 

the module or the component for redundancy, due to the charac-

teristics of our problem. In our experiments, TSMRAP was ap-

plied 5 times with different initial solutions for each problem.

3.3  Tabu list

The tabu list is one of the mechanism to prevent cycling and 

guide the search toward unexplored regions of the solution 

space. Kultruel-Konak et al. [8] showed that the dynamic size 

of a tabu list plays an important role in finding the better sol-

utions for RAP. For the long-term memory, the size of a tabu 

list is reset every 20 iterations to the value of between [n, 3n] 

uniformly distributed. Once the list is full, the oldest element of 

the tabu list is removed as a new one is added. 

3.4  Penalty function

The TS generally adopts the penalty function to allow to ex-

plore the search towardthe promising infeasible regions. The 

penalty function of our TSMRAP is employed as the same that 

of TS [8] . The penalty function for only one cost constraint is 

as follows:               

  
     

k

c
feasallp NFT

Δc
RRxRxR 








  

            (1)  

   

Where  is the unpenalized (feasible or infeasible) system 

reliability of the best solution found so far,   is the system 

reliability of the best feasible solution found so far, and c

represents the magnitude of the constraint violation. The initial 

value of  is set to 1% of the cost constraints limit C and 

k is set to 1, though computational results are not sensitive to 

this value.

3.5 The structure of generating the neighborhood 

Solutions

In TSMRAP, neighborhood solutions are generated by two 

moves, that is, the first and second move. The first move is 

similar to the TS [8] for the series-parallel system, that is, to 

change the allocated redundant number of the module or com-

ponent by adding or subtracting one. The second move is some-

what more complicated than the first move due to the charac-

teristics of the problem. The scheme of the second move is to 

replace the current solution with the redundant value of the 

module or component. That is, if the current solution within a 

subsystem is assigned to the module, then it is replaced with a 

series of the component. Reversely, if the current solution with-

in a subsystem is assigned to the component, then it is replaced 

by the module. 

For example, let us consider the following system structure 

with 2 modules and 5 components in Table 1. The cost func-

tion is as follows. 

        

,  for i=1, 2,…, 8.             (2)

Table 1: An example with two modules 

Unit Parent unit Reliability Price 
1(system) - 0.40029 72 2

11 1 0.72675 26 2

12 1 0.76500 19 3

111 11 0.90000 5 3

112 11 0.95000 6 4

113 11 0.85000 5 4

121 12 0.90000 6 4

122 12 0.85000 7 4

Table 2: All the neighborhood solutions by two moves

x=(11, 12, 111, 112, 113, 121, 122) c(x)   )(xRp

current sol. ( 2, 0, 0, 0, 0, 2, 1) 95 0.778669

1st  Move

          
 

Adding

( 3, 0, 0, 0, 0, 2, 1) 125 0.647355

( 2, 0, 0, 0, 0, 3, 1) 149 0.438873

( 2, 0, 0, 0, 0, 2, 2) 114 0.796362

Subtracting
( 1, 0, 0, 0, 0, 2, 1) 67 0.611560

( 2, 0, 0, 0, 0, 1, 1) 77 0.707881

2nd Move

( 0, 0, 1, 1, 1, 2, 1) 66 0.611560

( 0, 0, 2, 2, 2, 2, 1) 112 0.727356

( 2, 1, 0, 0, 0, 0, 0) 78 0.707881

( 2, 2, 0, 0, 0, 0, 0) 103 0.852996

The cost limit is set to 95. Suppose that the current solution 

during the iterations of TSMRAP to obtain the optimal solution 

for our problem to be given in Table 2, that is, the encoding 

status of (2, 0, 0, 0, 0, 2, 1, 0, 0). From the current solution, 

all the neighborhood solutions generated by the two moves are 

shown in Table 2. The number of the neighborhood solutions 
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by the first move (adding or subtracting one) are 5 cases shown 

in Table 2. In the first move, notice that when the redundant 

value of component (122) equals to 1, it is not allowed to sub-

tract one from the component (122). 

The scheme of the second move is to replace the current sol-

ution with the redundant value of the module or component. 

The number of the neighborhood solutions generated by the 

second move is 4 cases. As shown in Table 2, when the value 

of module (11) equals to 2, it is replaced with two cases of 

components (111, 112, 113), that is, (1, 1, 1) and (2, 2, 2). 

Namely, it is allowed to assign a series of the redundant value 

of components up to the value of the redundant number of 

module (11), that is, 2. Reversely, when the value of compo-

nent (121, 122) equals to (2, 1), it is replaced with two cases 

of module (12), that is, 1 and 2.  We assign the redundant val-

ue of module up to the maximum value of the redundant num-

ber among components (121) and (122), that is, 2. 

In Table 2, the system reliability for each neighborhood sol-

ution is evaluated by the penalty function of Eq. (2). For exam-

ple, (2, 0, 0, 0, 0, 2, 2) has the penalty value of 0.796362 in-

stead of 0.895469.  Among 9 candidates of neighborhood sol-

utions, (2, 2, 0, 0, 0, 0, 0), which has the maximum value of 

the system reliability (0.852996), is selected for the next best 

move of TSMRAP.

4. An example and computational 

results

In this section, we conduct three experiments. First, we men-

tion the possibility of having MRAP’s superior solutions to the 

traditional RAP. Second, we compare the proposed TSMRAP 

and the previous GA for three cases of levels. Finally, we eval-

uate the performance of metaheuristics for additional 120 test 

problems for moderate size of system structure.

4.1 An example of MRAP’s superior solutions to the 

traditional RAP

We compare the traditional RAP of considering only the com-

ponent redundancy for the lowest-level with MRAP of allowing 

the modular and the component redundancy. We consider the 

3-level system. Table 3 gives the values of input variables for 

reliability, price, and additive cost parameter. Test problems are 

generated by varying the cost limit from 150 to 340. A compar-

ison between the traditional RAP and MRAP is shown in Table 

4. As the results in Table 4 indicate, MRAP provides the superi-

or solutions to the traditional RAP for 19 cases of 20 test 

problems. For only one case (cost limit of 190), the traditional 

RAP and MRAP have the same result of 0.8878.

Table 3: The input data for 3-level system 

Unit Parent unit Reliability Price  
1(system) - 0.40029 72 2

11 1 0.72675 26 2

12 1 0.76500 19 3

13 1 0.72000 21 2

111 11 0.90000 5 3

112 11 0.95000 6 4

113 11 0.85000 5 4

121 12 0.90000 6 4

122 12 0.85000 7 4

131 13 0.90000 8 3

132 13 0.80000 7 4

Table 4: A comparison of the traditional RAP and MRAP 

Cost 
limit

Traditional RAP  MRAP

Total
Cost

Rel. Total
Cost

 Rel.

150 150 0.7687 149 *0.8057

160 150 0.7687 158 *0.8309

170 168 0.8455 169 *0.8511

180 168 0.8455 175 *0.8668

190 186 *0.8878 186 *0.8878

200 186 0.8878 199 *0.9010

210 209 0.8959 202 *0.9136

220 209 0.8959 215 *0.9272

230 212 0.8959 228 *0.9319

240 239 0.9052 228 *0.9319

250 241 0.9174 241 *0.9457

260 241 0.9174 241 *0.9469

270 264 0.9258 270 *0.9609

280 264 0.9258 270 *0.9609

290 290 0.9342 270 *0.9609

300 296 0.9354 270 *0.9609

310 296 0.9354 304 *0.9755

320 317 0.9439 304 *0.9755

330 317 0.9439 304 *0.9755

340 317 0.9439 304 *0.9755

(*: the best result among two problems)

111 113

111 113

112

121 122

121 122

131 132

131 132

(a) Traditional RAP    

11

11 121 122

121 122

131 132

131 132

(b)  MRAP

Figure 1: The system structure 
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Specifically, for the cost limit of 170, both of the system 

structuresare shown in Figure 1. In this case, the optimal sol-

ution of the traditional RAP and MRAP are given by 0.8455 

and    0.8511, respectively. This result indicates that MRAP 

considering the modular redundancy as well as the component 

redundancy at the lowest-level provides the possibility of hav-

ing the better system reliability than the traditional RAP of con-

sidering only the component redundancy.

4.2 Computational results

To additionally evaluate the performance of the previous 

GA[16] and the proposed TSMRAP, the new test problems for 

moderate size of system structure are designed. They are com-

posed of 4 sets of 10 test problems for each level, that is, totally 

120 test problems. For the case of 3-level, we replicated the data 

in Table 3 by h-fold, where h ranges from 4, 6, 8, to 10, that is, 

the number of subsystems of each problem became n=×  

(h=4, 6, 8, and 10).  Similarly, for the cases of 4-level, the num-

ber of subsystems of each problem became n=×  (h =6, 9, 

12, and 15). For each set, 10 test problems were generated ac-

cording to increase the cost limit of the constraint by 100. We 

increase the cost limit(C) of the constraints appropriately for each 

problem according to the size of problems in order to assign the 

reasonable value (not to be very low) of system reliability for 

each problem.  In our numerical experiments, the stopping crite-

rion of TSMRAP was defined as 200 iterations without finding 

an improvement in the best feasible solution. TSMRAP was ap-

plied 5 times with different starting initial solutions for each test 

problem. The computational results for evaluating the perform-

ance between GA and TSMRAP are summarized in Table 5. 

Two algorithms are coded in C/C++, and experiments are per-

formed on a Pentium IV 3.0 GHz PC. Performances of GA and 

TSMRAP are assessed in terms of average relative error(A), 

maximum relative error(M), optimality rate(O) and average ex-

ecution time(sec.) of 10 problems(T) defined as follows.
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j
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R
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O = the number of cases in which each method yields the 

best solution among 10 problems. 

= the system reliability obtained by each method for test 

problem j.


= the best system reliability obtained by both of GA and 

TSMRAP.

Table 5: Computational results of GA and TSMRAP

      
3-level 4-level

GA  TSMRAP GA TSMRAP

n=12

A
M
O 
T 

0.0084
0.0208
1/10
2.7

0.0
0.0
10/10
4.0

0.0143
0.0241
1/10
28.9

0.0
0.0
10/10
27.3

n =18

A
M
O 
T 

0.0155
0.0446
0/10
10.7

0.0
0.0
10/10
10.6

0.0205
0.0349
0/10
54.5

0.0
0.0
10/10
59.9

n=24

A
M
O 
T 

0.0118
0.0354
1/10
44.7

0.0
0.0
10/10
21.9

0.0166
0.0384
0/10
163.6

0.0
0.0
10/10
104.5

n=30

A
M
O 
T 

0.0118
0.0302
0/10
90.1

0.0
0.0
10/10
34.9

0.0356
0.1231
2/10(*)
461.5

0.0016
0.0133
8/10(*)
169.4

As the results in Table 5 indicate, TSMRAP outstandingly 

outperformed the GA. TSMRAP obtained a higher system reli-

ability in 115 of 120 test cases. TSMRAP failed to obtain the 

best solution for only two cases in the case of n=30 for 4-level. 

Even for these cases, the average relative error (A) of GA is 

very poor, scoring the higher value of 0.0356 than 0.0016 of 

TSMRAP. GA obtained totally the best solution in only 5 cas-

es, in which two cases are the higher system reliability than 

TSMRAP and 3 cases are the same system reliability of 

TSMRAP.  

In terms of computing time, GA and TSMRAP are nearly 

equal for the case n=12 and 18 of 3-level and 4-level. For the 

cases (n=24 and 30) of 3-level and 4-level, TSMRAP is gen-

erally faster than GA. Specifically, when n=30 of 3-level and 

4-level, the computing time of GA is almost 3 times of 

TSMRAP’s. 

5. Conclusions

  The RAP  has usually considered only the component re-

dundancy at the lowest-level for the enhancement of system 

reliability. A system can be functionally decomposed into sys-

tem, module, and component levels. Modular redundancy can 

be more effective  than component redundancy at the low-

est-levelbecause in modular systems, duplicating a module com-

posed of several components can be easier, and requires less 

time and skill. This paper dealt with  a MRAP  in which all 

cases of redundancy for system, module, and component levels 

are considered. A TSMRAP of memory-based mechanisms that 

balances intensification with diversification via the short-term 

and long-term memory was proposed for its solution. To the 

best of our knowledge, this is the first attempt to use a TS for 

MRAP. Our TSMRAP was compared with the previous GA for 
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MRAP on the new composed test problems as well as the 

benchmark problems from the literature. Computational results 

showed that the TSMRAP outstandingly outperformed the GA 

for almost all test problems.

For the further research, we will consider various RAPs, de-

velop efficient metaheuristics and compare their performance. 

Even if we consider the static RAP, the RAP in dynamic reli-

ability cases may be a promising area and in that case, oper-

ations problem can also be considered together with RAP.
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