• Title/Summary/Keyword: Long cylinder

Search Result 207, Processing Time 0.025 seconds

Reynolds Number Dependence of Bearing Performance

  • Kim E.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.149-154
    • /
    • 1997
  • Based on the full Navier-Stokes solutions, the thermohydrodynamic performance of a long journal bearing is investigated. A numerical method based on Galerkin's procedure and B-spline test functions has been presented for solving two-dimensional problems involving fluid flow and heat transfer. For numerical stability the artificial compressibility is employed to the conservation of mass. The discretized algebraic equations are solved by Newton's method. Effects of varying the speed of an inner cylinder to load carrying capacity are investigated. The results indicated that the increase of the speed of an inner cylinder has a significant effect on the temperature profile and ultimately on the performance.

  • PDF

Effect of Free End Shape on Wake Structure Around a Finite Cylinder Located in an Atmospheric Boundary Layer (대기경계층 내에 놓인 실린더의 자유단 형상변화가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-Woo;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.105-116
    • /
    • 2003
  • The flow structure around the free end of a finite circular cylinder (FC) embedded in an atmospheric boundary layer (ABL) over open terrain was investigated experimentally with varying the free end shape. The experiments were carried out in a closed-return type subsonic wind tunnel. A finite cylinder with an aspect ratio (L/D) of 6 was mounted vertically on a long flat plate. The Reynolds number based on the cylinder diameter is about Re=7,500. The velocity fields near the FC free end were measured using the single-frame double-exposure PIV method. As a result, for the FC with a right-angled free end, there is a peculiar vortical structure, showing counter-rotating twin vortices near the FC free end. It is caused by the interaction between the entrained irrotational fluids from both sides of FC and the downwash flow from the FC free-end.

Improvement of Signal Transmission Method of Ship's Engine Performance Analyzer(SEPA) using PLM (전력선 모뎀을 이용한 선박엔진 성능분석기의 신호전달방식의 개선)

  • Kim, Kun-Woo;Yang, Hyun-Suk;Lim, Hyun-Jung;Choi, Jun-Gil;Lee, Sung-Geun;Kim, Yoon-Sik
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.53-54
    • /
    • 2005
  • This paper describes that send some signal from encoder attached to crankshaft of marine-engine to measuring instrument using power line modem(PLM) and display cylinder pressure, rpm and etc. on LCD. Conventional method that sends signal along the long signal line has some inconvenience from too long signal line length caused by huge volume of ship's engine. Power line modem can have short signal line from outlets to measuring instrument. Because it use exist power line for send signals, so it have low installation cost and could have good merits in job sites. Through this experiment, pressure in cylinder, engine rpm and etc. signals through PLM are well recognized at measuring instrument.

  • PDF

The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion (분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향)

  • Kook, Sang-Hoon;Kong, Jang-Sik;Park, Se-Ik;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

A Case Study of Minimizing Construction Time in Long and Large Twin Tube Tunnel (대단면 장대터널 공기단축 사례연구)

  • No Sang-Lim;Noh Seung-Hwan;Lee Sang-Pil;Kim Moon-Ho;Seo Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.177-184
    • /
    • 2005
  • The Sapaesan tunnel, the longest twin tube tunnel (4km) in Korea with 4 lanes each, is under construction with two years of delayed schedule because of the strong opposition from environmental bodies. Therefore, maximizing the construction efficiency was needed in tunnel project to compensate for time delay. This study includes improvements in the construction of the Sapaesan tunnel such as increasing excavation length and changing excavation sequence. In this paper the system for predicting tunnel face ahead is also introduced. Bulk-Emulsion explosive and Cylinder-Cut method were adopted in tunnel blasting to increase the excavation length. Optimum tunnel excavation step was designed to make up delayed time. Tunnel foe mapping, TSP survey and geological prediction system using computerized jumbo-drill were performed fnr safe construction of long and large twin tube tunnel.

Analysis of Steel/composite Cylinder by GUI Program (GUI를 이용한 특수강/복합재 이중구조 후육실린더 해석)

  • Kim, Chi-Wan;Kim, Wie-Dae
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.126-132
    • /
    • 2012
  • It is useful to have a quick analysis program in early design process for feasibility studies of composite cylinder because it takes long time and is not cost effective by commercial programs. In this paper, a GUI program is developed to calculate the stress distribution in a fast manner with the properties, the orientation angle and the stacking sequence of composite material using LabVIEW. The stress distributions of an autofrettaged cylinder and a composite cylinder with internal pressure are compared with the results by MSC Nastran/patran. The stress distribution of steel/composite cylinder is compared with the values of existing studies, and is proved. Furthermore, by calculating the stress distribution of an autofrettaged steel/composite cylinder, the stress distribution is estimated, and the program will be useful in an early design phase for feasibility studies.

A Study on the Transient Hygrothermal Stresses in an Orthotropic Hollow Cylinder (직교이방성 속빈 원통에서 과도적 흡습열 응력에 관한 연구)

  • 조환기;신근용
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.110-120
    • /
    • 1999
  • Transient hygrothermal stresses in an infinitely long hollow cylinder subjected to heating in hygroscopic environments at the surfaces are studied. The equations of hygrothermoelasticity based on the plane strain assumption are formulated by considering the coupling effects between heat and moisture. A closed form solution for the transient hygrothermal stresses is obtained by using decoupling techniques and the method of separation of variables. Numerical results including distributions of temperature and moisture concentration are presented. Effects of transient hygrothermal characteristics are clearly shown in both displacements and stress distributions in the wall of hollow cylinder.

  • PDF

Rotating Flows in a Circular Cylinder with Unstable Stratification (불안정 성층화를 가진 원통형 용기 내의 회전유동에 관한 연구)

  • Kim, Jae-Won
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.27-38
    • /
    • 1998
  • Rotating flow of a stratified fluid contained in a circular cylinder with unstable temperature gradient imposed on the side wall of it has been numerically studied. The temperatures at the endwall disks are constant. The top disk of the container is coider than that of the bottob disk, as much as the temperature difference n${\Delta}$T, (0${\leq}$n${\leq}$3). Flows in the vessel are driven by an impulsive rotation of the hot bottom disk with respect to the central axis of the cylinder. Flow details have been acquired. For this flow, the principal balance in the interior core is characterized by a relationship between the radial temperature gradient and the vertical shear in the azimuthal velocity. As the buoyancy effect becomes appreciable, larger portions of the meridional fluid transport are long-circuit from the bottom disk to the interior region via the side wall.

  • PDF

Slenderness ratio of telescopic cylinder-columns

  • Sugiyama, Yoshihiko;Ohtomo, Takamitsu
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.329-339
    • /
    • 2001
  • The present paper deals with the effective slenderness ratio of telescopic cylinders as a long column having different cross sections. Firstly, the slenderness ratio defined in the current standard for the telescopic cylinders is discussed to point out some difficulties which arise when the ratio is applied to the column having different cross sections. Secondly, a new effective slenderness ratio is proposed for columns having different cross sections by introducing a partial effective slenderness ratio. Finally, the proposed slenderness ratio is applied, for extending and development of discussion, to a two-staged column having piece-wise constant cross sections and a cylindrical column having linearly varying diameters.

On the attenuation of the axisymmetric longitudinal waves propagating in the bi-layered hollow cylinder made of viscoelastic materials

  • Kocal, Tarik;Akbarov, Surkay D.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.143-160
    • /
    • 2017
  • The paper studies the attenuation of the axisymmetric longitudinal waves propagating in the bi-layered hollow cylinder made of linear viscoelastic materials. Investigations are made by utilizing the exact equations of motion of the theory of viscoelasticity. The dispersion equation is obtained for an arbitrary type of hereditary operator of the materials of the constituents and a solution algorithm is developed for obtaining numerical results on the attenuation of the waves under consideration. Specific numerical results are presented and discussed for the case where the viscoelasticity of the materials is described through fractional-exponential operators by Rabotnov. In particular, how the rheological parameters influence the attenuation of the axisymmetric longitudinal waves propagating in the cylinder under consideration, is established.