• Title/Summary/Keyword: Long crested irregular waves

Search Result 11, Processing Time 0.021 seconds

A comprehensive study on ship motion and load responses in short-crested irregular waves

  • Jiao, Jialong;Chen, Chaohe;Ren, Huilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.364-379
    • /
    • 2019
  • Wave-induced ship motion and load responses are usually investigated on the assumption that the incident waves are long-crested. The realistic sea waves are however short-crested irregular waves. Real practice reveals that the ship motion and load responses induced by short-crested waves are different from those induced by long-crested waves. This paper aims to conduct a comprehensive study on ship motions and loads in different wave fields. For this purpose, comparative studies by small-scale model towing tank test and large-scale model sea trial are conducted to experimentally identify the difference between ship motions and loads in long-crested and short-crested irregular waves. Moreover, the influences of directional spreading function of short-crested waves on ship motions and loads are analyzed by numerical seakeeping calculation. The results and conclusions obtained from this study are of great significance for the further extrapolation and estimation of ship motions and loads in short-crested waves based on long-crested wave response results.

Forward Speeds and Turning Trajectories of a KSUPRAMAX Model Ship in Long-Crested Irregular and Equivalent Regular Waves (KSUPRAMAX 모형선의 장파정 불규칙파 중 전진속도 및 선회궤적을 유사 재현하는 규칙파 탐색)

  • Dong-Jin Kim;Kunhang Yun;Chang-Seop Kwon;Yeon-Gyu Kim;Seung-Hyun Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.4
    • /
    • pp.258-266
    • /
    • 2024
  • It is necessary to predict the ship's manoeuvrabilities in waves for its safe operations in adverse weather. At the early design stage, free-running model tests can be performed to estimate the ship's manoeuvring performance in irregular wave conditions. The wave elevations are randomly varied with times in irregular waves, large deviations of the manoeuvring performance indices are likely to occur depending on the start time of steering scenarios. In this study, a KSUPRAMAX model ship's manoeuvres in long-crested irregular waves are reproduced in the equivalent regular waves. The equivalent regular waves are searched from the energy flux relations between long-crested irregular and regular waves. But there are differences of forward speeds in the model tests, regular wave height and period are modified so that both the forward speed and the trajectory drift in regular waves are similar to those in irregular waves. In addition, low speed course-keeping tests are performed with various wave incident angles in irregular and regular waves. It is confirmed that check helms, drift angles, and speeds as well as trajectories in irregular waves are similar to those in equivalent regular waves.

Generation of Real Sea Waves based on Spectral Method and Wave Direction Analysis (스펙트럴 방법에 의한 실해역파 재현 및 파 방향 해석)

  • Lee, Jin-Ho;Choi, Jae-Woong;Kang, Yun-Tae;Ha, Mun-Keun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.212-219
    • /
    • 2005
  • Real sea waves in a towing wave basin have been generated using random periodic motion of the segmented wave makers and the wave reflections of sidewalls. Theoretically, the real sea waves can be described by the superposition of many random oblique waves. This paper introduces numerical real sea wave generation in a rectangular wave basin using spectral method that uses a superposition of orthogonal functions which have to satisfy the Laplace equation. Oblique regular waves, long crested irregular waves and real sea waves were simulated and met the requirement of sidewall wave reflection and wave absorption. MLM (Maximum Likelihood Method) and Spatial Fourier Transform were used in order to obtain propagated wave direction characteristics. The estimated results proved the usefulness of the method and the performances showed reasonable directional patterns comparing with generating patterns.

Numerical and Experimental Simulation of Directional Waves in Towing Tank (예인수조에서 방향스펙트럼파의 수치적 및 실험적 재현)

  • Y.K. Chung;J.H. Lee;H.H. Chun;D.D. Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.2
    • /
    • pp.1-9
    • /
    • 2001
  • Based on the linear potential theory with the side wall reflection. the directional spectrum waves are numerically simulated by a source distribution method and these together with long-crested irregular waves are also generated at the towing tank of Pusan National University by considering the transfer function of the wave maker obtained from the regular waves. In the numerical simulation, the characteristics of the directional spreading function are investigated by changing the breadth of the wave-maker unit. the width of the towing tank and the wave period. In the experimental generation, the statistical properties and the power spectrums of the long-crested irregular and directional waves are compared along the towing tank length. The directional spreading functions are also investigated at various positions in the tank.

  • PDF

Motion Analysis of a Very Large Floating Structure in Irregular Waves (불규칙파 중 초대형 부유식 해양 구조물에 대한 운동 해석)

  • 신현경;이호영;임춘규;신현수;박인규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.63-68
    • /
    • 2000
  • A very large floating structure has rather small motion characteristics as to the whole body, while the motion at end part of such structure becomes largest due to the elastic motion of the structure. This paper presents on the theoretical result on the relative motion characteristics and green water phenomena of VLFS in waves This phenomena affect not only to strength of the structure but also the determination of depth of structure. To predict motion responses of structure in regular waves, the source-dipole distribution method and F.E.M is used By irregular wave results, the probability of occurrence of green water and response of the structure were calculated.

  • PDF

Seakeeping Study of a Container Ship in Regular Waves (콘테이너선의 파랑중 내항성 연구)

  • Yang, Seung-Il;Hong, Seok-Won;Lee, Sang-Mu
    • 한국기계연구소 소보
    • /
    • s.9
    • /
    • pp.193-208
    • /
    • 1982
  • Flap type wave-maker, wave absorber, motion measuring equipment and related instruments were newly installed at Ship Experimental Towing Tank, Ship Research Station, KIMM. The model tests in regular head and following waves were successfully carried out and the motion and wave loads in regular and long crested irregular waves were calculated for a container ship model which was adopted as the hull form for the comparative calculations of the ITTC Seakeeping Committee. The results of model tests show good agreement with calculated results and the latter are generally in good agreement with the results of the comparative calculations.

  • PDF

The Numerical Simulation of Muti-directional Wasves and Statistical Investigation (다방향파의 수치시뮬레이션 및 통계적 검토)

  • 송명재;조효제;이승건
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.114-120
    • /
    • 1993
  • Responses of marine vehicles and ocean structures in a seaway can be predicted by applying the probabilistic approach. When we consider a linear system, the responses in a random seaway can be evaluated through spectral analysis in the frequency domain. But when we treat nonlinear system in irregular waves, it is necessary to get time history of waves. In the previous study we introduced one-directional waves (long crested waves)as wave environment and carried out calculations and experiments in the waves. But the real sea in which marine vehicles and structures are operated has multi-directional waves (short crested waves). It is important to get a simulated random sea and analyse dynamic problems in the sea. We need entire sample function or probabillty density function to infer statistical value of random process. However if the process are ergodic process, we can get statistical values by analysis of one sample function. In this paper, we developed the simulation technique of multi-directional waves and proved that the time history given by this method keep ergodic characteristics by the statistical analysis.

  • PDF

A Study on the High-Order Spectral Model Capability to Simulate a Fully Developed Nonlinear Sea States

  • Young Jun Kim;Hyung Min Baek;Young Jun Yang;Eun Soo Kim;Young-Myung Choi
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.20-30
    • /
    • 2023
  • Modeling a nonlinear ocean wave is one of the primary concerns in ocean engineering and naval architecture to perform an accurate numerical study of wave-structure interactions. The high-order spectral (HOS) method, which can simulate nonlinear waves accurately and efficiently, was investigated to see its capability for nonlinear wave generation. An open-source (distributed under the terms of GPLv3) project named "HOS-ocean" was used in the present study. A parametric study on the "HOS-ocean" was performed with three-hour simulations of long-crested ocean waves. The considered sea conditions ranged from sea state 3 to sea state 7. One hundred simulations with fixed computational parameters but different random seeds were conducted to obtain representative results. The influences of HOS computational parameters were investigated using spectral analysis and the distribution of wave crests. The probability distributions of the wave crest were compared with the Rayleigh (first-order), Forristall (second-order), and Huang (empirical formula) distributions. The results verified that the HOS method could simulate the nonlinearity of ocean waves. A set of HOS computational parameters was suggested for the long-crested irregular wave simulation in sea states 3 to 7.

Longitudinal Motion Analysis in Multi-Directional Irregular Waves for a Training Ship using Commercial Code (상용코드를 이용한 다방향 불규칙파중 실습선의 종운동해석)

  • Han, Seung-Jae;Kim, In-Cheol;Oh, Dea-Kyun;Lee, Gyoung-Woo;Gim, Ok-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2012
  • This study gives the vertical motion analysis in multi-directional irregular waves using a commercial code(MAXSURF v.16) based on linear strip theory for a training ship. To verify the commercial code prior to the analysis, we guarantees the reliability of this paper's results using the commercial code by comparing with the results(Flokstra, 1974) of same hull and experimental conditions on a Panamax container. The analysis conditions are Beaufort wind scale No. 5($\bar{T}=5.46$, $H_{1/3}=2m$) based on ITTC wave spectrum, encounter angle Head & bow seas($150^{\circ}$) and Froude number Fn=0.257. Finally, we calculates heave RAO, pitch RAO and obtains the result of ship's response spectra for heave and pitch motions. In the motion response spectrum under the multi-directional irregular waves, heave motion reacts slightly high in short-crested waves and pitch motion reacts high in long-crested waves.

Design of a ship model for hydro-elastic experiments in waves

  • Maron, Adolfo;Kapsenberg, Geert
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1130-1147
    • /
    • 2014
  • Large size ships have a very flexible construction resulting in low resonance frequencies of the structural eigen-modes. This feature increases the dynamic response of the structure on short period waves (springing) and on impulsive wave loads (whipping). This dynamic response in its turn increases both the fatigue damage and the ultimate load on the structure; these aspects illustrate the importance of including the dynamic response into the design loads for these ship types. Experiments have been carried out using a segmented scaled model of a container ship in a Seakeeping Basin. This paper describes the development of the model for these experiments; the choice was made to divide the hull into six rigid segments connected with a flexible beam. In order to model the typical feature of the open structure of the containership that the shear center is well below the keel line of the vessel, the beam was built into the model as low as possible. The model was instrumented with accelerometers and rotation rate gyroscopes on each segment, relative wave height meters and pressure gauges in the bow area. The beam was instrumented with strain gauges to measure the internal loads at the position of each of the cuts. Experiments have been carried out in regular waves at different amplitudes for the same wave period and in long crested irregular waves for a matrix of wave heights and periods. The results of the experiments are compared to results of calculations with a linear model based on potential flow theory that includes the effects of the flexural modes. Some of the tests were repeated with additional links between the segments to increase the model rigidity by several orders of magnitude, in order to compare the loads between a rigid and a flexible model.