Acknowledgement
This work was supported by Pusan National University Research Grant, 2021 and supported by BK21 FOUR Graduate Program for Green-Smart Naval Architecture and Ocean Engineering of Pusan National University.
References
- Bouscasse, B., Califano, A., Choi, Y. M., Haihua, X., Kim, J. W., Kim, Y. J., Lee, S. H., Lim, H. -J., Park, D. M., Peric, M., Shen, Z., & Yeon S. M. (2021). Qualification criteria and the verification of numerical waves: Part 2 CFD-based numerical wave tank. Proceedings of 40th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2021-63710. https://doi.org/10.1115/OMAE2021-63710
- Bonnefoy, F., Ducrozet, G., Le Touze, D., & Ferrant, P. (2009). Time-domain simulation of nonlinear water waves using spectral methods. In Advances in Numerical Simulation of Nonlinear Water Waves. World Scientic.
- Canard, M., Ducrozet, G., & Bouscasse, B. (2020). Generation of 3hr long-crested waves of extreme sea states with HOS-NWT solver. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, OAME2020-18930. https://doi.org/10.1115/OMAE2020-18930
- Canard, M., Ducrozet, G., & Bouscasse, B. (2022). Varying ocean wave statistics emerging from a single energy spectrum in an experimental wave tank. Ocean Engineering, 246, 110375. https://doi.org/10.1016/j.oceaneng.2021.110375
- Choi, Y.M. (2019). Two-way coupling between potential and viscous flows for a marine application [Doctoral dissertation, Ecole Centrale de Nantes].
- Choi, Y.M., Bouscasse, B., Seng, S., Ducrozet, G., Gentaz, L., & Ferrant, P. (2018). Generation of regular and irregular waves in Navier-stokes CFD solvers by matching with the nonlinear potential wave solution at the boundaries, Proceedings of 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, OMAE2018-78077. https://doi.org/10.1115/OMAE2018-78077
- Dommermuth, D., & Yue, D. (1987). A high-order spectral method for the study of nonlinear gravity waves. Journal of Fluid Mechanics, 184, 267-288. https://doi.org/10.1017/S002211208700288X
- Ducrozet, G., Bonnefoy, F., Le Touze, D., & Ferrant, P. (2007). 3-D HOS simulations of extreme waves in open seas. Natural Hazards and Earth System Sciences, 7(1), 109-122. https://doi.org/10.5194/nhess-7-109-2007
- Ducrozet, G., Bonnefoy, F., Le Touze, D., & Ferrant, P. (2012). A modied high-order spectral method for wavemaker modeling in a numerical wave tank. European Journal of Mechanics - B/Fluids, 34, 19-34. https://doi.org/10.1016/j.euromechflu.2012.01.017
- Ducrozet, G., Bonnefoy, F., Le Touze, D., & Ferrant, P. (2016). HOS-ocean: Open-source solver for nonlinear waves in open ocean based on High-Order Spectral method. Computer Physics Communications, 203, 245-254. https://doi.org/10.1016/j.cpc.2016.02.017
- Forristall, G. Z. (2000). Wave crest distributions: Observations and second-order theory. Journal of Physical Oceanography, 30(8), 1931-1943. https://doi.org/10.1175/1520-0485(2000)030<1931:WCDOAS>2.0.CO;2
- Goda, Y. (1983). Analysis of wave grouping and spectra of longtravelled swell. Report of Port and Harbour Research Institute, 22(1), 3-41.
- Hamada, T. (1965). The secondary interactions of surface waves. Report of Port and Harbour Research Institut.
- Huang, Z., & Zhang, Y. (2018). Semi-empirical single realization and ensemble crest distributions of long-crest nonlinear waves. Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering (Vol. 1, V001T01A032). American Society of Mechanical Engineers. https://doi.org/10.1115/OMAE2018-78192
- Kim, C. H. (2008). Nonlinear waves and offshore structures, World Scientific. https://doi.org/10.1142/4906
- Lee, W. T., & Bales, S. L. (1984). Environmental data for design of marine vehicles. In Ship Structure Symposium.
- Lewis, E. V. (1989). Principles of naval architecture second revision: Volume III- Motions in waves and controllability. Society of Naval Architects and Marine Engineers.
- Li, Z., Deng, G., Queutey, P., Bouscasse, B., Ducrozet, G., Gentaz, L., Touze, D. Le, Ferrant, P., Le Touze, D., & Ferrant, P. (2019). Comparison of wave modeling methods in CFD solvers for ocean engineering applications. Ocean Engineering, 188, 106237. https://doi.org/10.1016/j.oceaneng.2019.106237
- Longuet-Higgns, M. S. (1952). On the statistical distribution of the heights of sea waves. Journal of Marine Research, 11(1), 245-266.
- Lu, X., Dao, M.H., Le, Q.T. (2022). A GPU-accelerated domain decomposition method for numerical analysis of nonlinear waves-current-structure interactions. Ocean Engineering, 259, 111901. https://doi.org/10.1016/j.oceaneng.2022.111901
- Tick, L. J. (1963). Nonlinear probability models of ocean waves. Prentice-Hall.
- Welch, P. D. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. https://doi.org/10.1109/TAU.1967.1161901
- West, B. J., Brueckner, K. A., Janda, R. S., Milder, D. M., & Milton, R. L. (1987), A new numerical method for surface hydrodynamics. Journal of Geophysical Research, 92(C11), 11803-11824. https://doi.org/10.1029/JC092iC11p11803
- Xiao, Q., Zhu, R., & Huang, S. (2019). Hybrid time-domain model for ship motions in nonlinear extreme waves using HOS method. Ocean Engineering, 192, 106554. https://doi.org/10.1016/j.oceaneng.2019.106554