DOI QR코드

DOI QR Code

A Study on Design Variables for Increasing the Breaking Strength of Synthetic Fiber Chain

  • Kyeongsoo Kim (Special Ships Advanced Technology Center, Research Institute of Medium & Small Shipbuilding) ;
  • Seonjin Kim (Department of Mechanical Engineering, Pukyong National University) ;
  • Hyunwoo Cho (Special Ships Advanced Technology Center, Research Institute of Medium & Small Shipbuilding) ;
  • Dokyoun Kim (Technical Research Center, DSR Corp.) ;
  • Yongjun Kang (Technical Research Center, DSR Corp.) ;
  • Taewan Kim (Special Ships Advanced Technology Center, Research Institute of Medium & Small Shipbuilding)
  • Received : 2022.11.25
  • Accepted : 2023.01.25
  • Published : 2023.02.28

Abstract

In this study, a fiber chain was developed to replace a steel chain using high-modulus polyethylene DM20. The pick count, wrapping count, and inner length were selected as the main design variables of the fiber chain and were analyzed to increase the breaking strength. Orthogonal array experiments were conducted, and the results were analyzed with respect to the breaking strength. The analysis revealed that the pick count and wrapping count had meaningful effects at significance levels within 5%. The main effect analysis revealed that a smaller pick count, larger wrapping count, and longer inner length caused the breaking strength to increase. With the wrapping count fixed at 1, a pick count less than -0.65, and an inner length greater than 0.38, the breaking strength was calculated to be greater than 300 kN. These results are expected be important factors in the derivation of an optimal combination of design variables to attain a fiber chain with a targeted strength.

Keywords

Acknowledgement

This research was supported by the Ministry of Trade, Industry & Energy (MOTIE) of Korea (S2641260).

References

  1. Banfield, S., & Casey, N. (1998). Evaluation of fiber rope properties for offshore mooring. Ocean Engineering, 25(10), 861-79. https://doi.org/10.1016/S0029-8018(97)10017-8
  2. Del Vecchio, C. J. M. (1992). Light weight materials for deep water moorings [Doctoral dissertation]. University of Reading.
  3. Petruska, D. J., Kelly, P., Stone, B., Ahjem, V., Zimmerman, E. H., Garrity, R., & Veselis,Y. (2010). SS: Fiber moorings, recent experiences and research: Updating API RP 2SM on synthetic fiber rope for offshore moorings [Conference presentation]. Offshore Technology Conference, Houston, USA. https://doi.org/10.4043/20836-MS
  4. Davies, P., Francois, M., Grosjean, F., Baron, P., Salomon, K., & Trassoudaine, D. (2002). Synthetic mooring lines for depths to 3000 meters [Conference presentation]. Offshore Technology Conference, Houston, USA. https://doi.org/10.4043/14246-MS
  5. Chi, C. H., Lundhild, E. M., Veselis, T., & Huntley, M. (2009).Enabling ultra-depwater mooring with aramid fiber rope technology [Conference presentation]. Offshore Technology Conference, Houston, USA. https://doi.org/10.4043/20074-MS
  6. Det Norske Veritas. (2018).Offshore fibre ropes (Offshore Standard DNV-OS-E303).
  7. Fernandes, A. C., Del Vecchio, C. J. M., Castro, G.A.V. (1999). Mechanical properties of polyester mooring cables. International Journal of Offshore and Polar Engineering, 9(03), 208-213.
  8. Peter, D., Yvan, R., Loic, D., & Patrice, W. (2011). Mechanical behaviour of HMPE and aramid fibre ropes for deep sea handling operations. Ocean Engineering, 38(17-18), 22208-2214. https://doi.org/10.1016/j.oceaneng.2011.10.010
  9. Davies, P., Francois, M., Lacotte, N., Vu, T. D., & Durville, D. (2015). An empirical model to predict the lifetime of braided HMPE handling ropes under cyclic eend over sheave (CBOS) loading. Ocean Engineering, 97, 74-81. https://doi.org/10.1016/j.oceaneng.2015.01.003
  10. Garrity, R., & Fronzaglia, W. (2008). The use of HMPE mooring lines in deepwater MODU mooring systems. In OCEANS 2008, Quebec City, QC, Canada, IEEE, 1-4. https://doi.org/10.1109/OCEANS.2008.5151912
  11. Leite, S., & Boesten, J. (2011). HMPE mooring lines for deepwater MODUs [Conference presentation]. Offshore Technology Conference Brazil, Rio de Janeiro, Brazil, https://doi.org/10.4043/22486-MS
  12. Bunsell, A. R. (2009). Handbook of tensile properties of textile and technical fibres. Woodhead Publishing.
  13. Tahar, A., & Kim, M. H. (2008). Coupled-dynamic analysis of floating structures with polyester mooring lines. Ocean Engineering, 35(17-18), 1676-1685. https://doi.org/10.1016/j.oceaneng.2008.09.004
  14. Weller, S. D., Davies, P., Vickers, A. W., & Johanning, L. (2014). Synthetic rope responses in the context of load history: Operational performance. Ocean Engineering, 83, 111-124. https://doi.org/10.1016/j.oceaneng.2014.03.010
  15. Berryman, C. T., Dupin, R. M., & Gerrits, N. S. (2002). Laboratory study of used HMPE MODU mooring lines [Conference presentation]. Offshore Technology Conference, Houston, USA. https://doi.org/10.4043/14245-MS
  16. Williams, J. G., Miyase, A., Li, D. H., & Wang, S. S. (2002). Small-scale testing of damaged synthetic fiber mooring ropes [Conference presentation]. Offshore Technology Conference, Houston, USA. https://doi.org/10.4043/14308-MS
  17. Ward, E. G., Ayres, R. R., Banfield, S. J., O'Hear, N., & Laurendine, T. (2006). The residual strength of damaged polyester ropes [Conference presentation]. Offshore Technology Conference, Houston, USA. https://doi.org/10.4043/18150-MS
  18. Da Costa Mattos, H. S., & Chimisso, F. E. G. (2011). Modelling creep tests in HMPE fibres used in ultra-deep-sea mooring ropes. International Journal of Solids And Structures. 48(1), 144-152. https://doi.org/10.1016/j.ijsolstr.2010.09.015
  19. Cedric, B., Peter, D., Guilhem, B., Yann, M., & Julien, B. (2020). Influence of bedding-in on the tensile performance of HMPE fiber ropes. Ocean Engineering, 203, 107144. https://doi.org/10.1016/j.oceaneng.2020.107144
  20. Gen, L., Wenhua, L., Shanyin, L., Hangyu, L., Yangyuan, G., & Yuqing, S. (2021). Dynamic stiffness of braided HMPE ropes under longterm cyclic loads: A full-scale experimental investigation. Ocean Engineering. 230, 109076. https://doi.org/10.1016/j.oceaneng.2021.109076
  21. Kim, K, Kim, T., Kim, N., Kim, D., Kang, Y., & Kim, S. (2021). Evaluating the mechanical properties of fiber yarns for developing synthetic fiber chains. Journal of Ocean Engineering and Technology. 35(6), 426-433. https://doi.org/10.26748/KSOE.2021.072
  22. International Organization for Standardization. (2019). Fibre ropes - Determination of certain physical and mechanical properties (ISO 2307:2019).