• Title/Summary/Keyword: Logic-based fuzzy neural networks

Search Result 79, Processing Time 0.022 seconds

Emotion Recognition Method for Driver Services

  • Kim, Ho-Duck;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.256-261
    • /
    • 2007
  • Electroencephalographic(EEG) is used to record activities of human brain in the area of psychology for many years. As technology developed, neural basis of functional areas of emotion processing is revealed gradually. So we measure fundamental areas of human brain that controls emotion of human by using EEG. Hands gestures such as shaking and head gesture such as nodding are often used as human body languages for communication with each other, and their recognition is important that it is a useful communication medium between human and computers. Research methods about gesture recognition are used of computer vision. Many researchers study Emotion Recognition method which uses one of EEG signals and Gestures in the existing research. In this paper, we use together EEG signals and Gestures for Emotion Recognition of human. And we select the driver emotion as a specific target. The experimental result shows that using of both EEG signals and gestures gets high recognition rates better than using EEG signals or gestures. Both EEG signals and gestures use Interactive Feature Selection(IFS) for the feature selection whose method is based on the reinforcement learning.

A Comparative Study of Estimation by Analogy using Data Mining Techniques

  • Nagpal, Geeta;Uddin, Moin;Kaur, Arvinder
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.621-652
    • /
    • 2012
  • Software Estimations provide an inclusive set of directives for software project developers, project managers, and the management in order to produce more realistic estimates based on deficient, uncertain, and noisy data. A range of estimation models are being explored in the industry, as well as in academia, for research purposes but choosing the best model is quite intricate. Estimation by Analogy (EbA) is a form of case based reasoning, which uses fuzzy logic, grey system theory or machine-learning techniques, etc. for optimization. This research compares the estimation accuracy of some conventional data mining models with a hybrid model. Different data mining models are under consideration, including linear regression models like the ordinary least square and ridge regression, and nonlinear models like neural networks, support vector machines, and multivariate adaptive regression splines, etc. A precise and comprehensible predictive model based on the integration of GRA and regression has been introduced and compared. Empirical results have shown that regression when used with GRA gives outstanding results; indicating that the methodology has great potential and can be used as a candidate approach for software effort estimation.

Associative Motion Generation for Humanoid Robot Reflecting Human Body Movement

  • Wakabayashi, Akinori;Motomura, Satona;Kato, Shohei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.121-130
    • /
    • 2012
  • This paper proposes an intuitive real-time robot control system using human body movement. Recently, it has been developed that motion generation for humanoid robots with reflecting human body movement, which is measured by a motion capture. However, in the existing studies about robot control system by human body movement, the detailed structure information of a robot, for example, degrees of freedom, the range of motion and forms, must be examined in order to calculate inverse kinematics. In this study, we have proposed Associative Motion Generation as humanoid robot motion generation method which does not need the detailed structure information. The associative motion generation system is composed of two neural networks: nonlinear principal component analysis and Jordan recurrent neural network, and the associative motion is generated with the following three steps. First, the system learns the correspondence relationship between an indication and a motion using training data. Second, associative values are extracted for associating a new motion from an unfamiliar indication using nonlinear principal component analysis. Last, the robot generates a new motion through calculation by Jordan recurrent neural network using the associative values. In this paper, we propose a real-time humanoid robot control system based on Associative Motion Generation, that enables user to control motion intuitively by human body movement. Through the task processing and subjective evaluation experiments, we confirmed the effective usability and affective evaluations of the proposed system.

Assessment of slope stability using multiple regression analysis

  • Marrapu, Balendra M.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.237-254
    • /
    • 2017
  • Estimation of slope stability is a very important task in geotechnical engineering. However, its estimation using conventional and soft computing methods has several drawbacks. Use of conventional limit equilibrium methods for the evaluation of slope stability is very tedious and time consuming, while the use of soft computing approaches like Artificial Neural Networks and Fuzzy Logic are black box approaches. Multiple Regression (MR) analysis provides an alternative to conventional and soft computing methods, for the evaluation of slope stability. MR models provide a simplified equation, which can be used to calculate critical factor of safety of slopes without adopting any iterative procedure, thereby reducing the time and complexity involved in the evaluation of slope stability. In the present study, a multiple regression model has been developed and tested its accuracy in the estimation of slope stability using real field data. Here, two separate multiple regression models have been developed for dry and wet slopes. Further, the accuracy of these developed models have been compared and validated with respect to conventional limit equilibrium methods in terms of Mean Square Error (MSE) & Coefficient of determination ($R^2$). As the developed MR models here are not based on any region specific data and covers wide range of parametric variations, they can be directly applied to any real slopes.

Decision Support System for Prediction and Estimation of Qualities Based on Neural Networks and Fuzzy Logic (퍼지 논리와 신경망에 기반한 공정 예측 및 품질 추정을 위한 공정관리 의사지원시스템)

  • Bae, Hyun;Woo, Young-Kwang;Kim, Sung-Sin;Woo, Kwang-Bang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.334-337
    • /
    • 2004
  • 차세대 생산 시스템(Next Generation Manufacturing System: NGMS)의 핵심 개념은 분산 생산 시스템과 다품종 소량의 유연 생산 시스템의 지원이다. 이러한 시스템의 구성을 위하여 실시간 데이터에 기반한 예측 모델이 필수적인데, 이러한 예측 기능을 통하여 생산공정의 관리와 운영, 특히 전체 공정관리를 효율적으로 수행할 수 있다. 한편, 공정으로부터 전송된 데이터는 특정한 형태의 지식으로 표현된다. 이러한 지식들은 시스템에 대한 다양한 정보를 가지고 있으므로 정보를 이용하여 시스템 상태를 빠르고 쉽게 진단할 수 있다. 공정 진단은 현재 공정 상태에서 생산되는 제품의 품질을 추정할 수 있는 정보로 활용된다. 본 논문에서는 이러한 개념이 바탕이 되어 공정관리 시스템을 설계하였다. 제안된 시스템의 적용 대상은 반도체 제조 공정의 단위 공정인 에칭 공정이다. 에칭 공정은 공정 중에 연속적인 검사가 수행되지 않고 최종 제품에 대한 검사가 수행되므로 불량 원인을 찾는 것이 쉽지 않다. 따라서 본 논문에서는 공정관리를 위한 의사지원시스템을 통해 공정의 연속적인 간접진단을 수행하고자 하였다. 본 연구에서 사용된 의사지원시스템은 각 공정에서 얻어지는 데이터와 경험적 지식을 토대로 공정시스템의 해석과 진단이 가능한 시스템이다.

  • PDF

Study on Fault Diagnostics Considering Sensor Noise and Bias of Mixed Flow Type 2-Spool Turbofan Engine using Non-Linear Gas Path Analysis Method and Genetic Algorithms (혼합배기가스형 2 스풀 터보팬 엔진의 가스경로 기법과 유전자 알고리즘 이용한 센서 노이즈 및 바이어스를 고려한 고장진단 연구)

  • Kong, Changduk;Kang, Myoungcheol;Park, Gwanglim
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.8-18
    • /
    • 2013
  • Recently, the advanced condition monitoring methods such as the model-based method and the artificial intelligent method have been applied to maximize the availability as well as to minimize the maintenance cost of the aircraft gas turbines. Among them the non-linear GPA(Gas Path Analysis) method and the GA(Genetic Algorithms) have lots of advantages to diagnose the engines compared to other advanced condition monitoring methods such as the linear GPA, fuzzy logic and neural networks. Therefore this work applies both the non-linear GPA and the GA to diagnose AE3007 turbofan engine for an aircraft, and in case of having sensor noise and bias it is confirmed that the GA is better than the GPA through the comparison of two methods.

State-Feedback Backstepping Controller for Uncertain Pure-Feedback Nonlinear Systems Using Switching Differentiator (불확실한 순궤환 비선형 계통에 대한 스위칭 미분기를 이용한 상태궤환 백스테핑 제어기)

  • Park, Jang-Hyun
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.716-721
    • /
    • 2019
  • A novel switching differentiator-based backstepping controller for uncertain pure-feedback nonlinear systems is proposed. Using asymptotically convergent switching differentiator, time-derivatives of the virtual controls are directly estimated in every backstepping design steps. As a result, the control law has an extremely simple form and asymptotical stability of the tracking error is guaranteed regardless of parametric or unstructured uncertainties and unmatched disturbances in the considered system. It is required no universal approximators such as neural networks or fuzzy logic systems that are adaptively tuned online to cope with system uncertainties. Simulation results show the simplicity and performance of the proposed controller.

Detection of Lung Nodule on Temporal Subtraction Images Based on Artificial Neural Network

  • Tokisa, Takumi;Miyake, Noriaki;Maeda, Shinya;Kim, Hyoung-Seop;Tan, Joo Kooi;Ishikawa, Seiji;Murakami, Seiichi;Aoki, Takatoshi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.137-142
    • /
    • 2012
  • The temporal subtraction technique as one of computer aided diagnosis has been introduced in medical fields to enhance the interval changes such as formation of new lesions and changes in existing abnormalities on deference image. With the temporal subtraction technique radiologists can easily detect lung nodules on visual screening. Until now, two-dimensional temporal subtraction imaging technique has been introduced for the clinical test. We have developed new temporal subtraction method to remove the subtraction artifacts which is caused by mis-registration on temporal subtraction images of lungs on MDCT images. In this paper, we propose a new computer aided diagnosis scheme for automatic enhancing the lung nodules from the temporal subtraction of thoracic MDCT images. At first, the candidates regions included nodules are detected by the multiple threshold technique in terms of the pixel value on the temporal subtraction images. Then, a rule-base method and artificial neural networks is utilized to remove the false positives of nodule candidates which is obtained temporal subtraction images. We have applied our detection of lung nodules to 30 thoracic MDCT image sets including lung nodules. With the detection method, satisfactory experimental results are obtained. Some experimental results are shown with discussion.

Study on Condition Monitoring of 2-Spool Turbofan Engine Using Non-Linear GPA(Gas Path Analysis) Method and Genetic Algorithms (2 스풀 터보팬 엔진의 비선형 가스경로 기법과 유전자 알고리즘을 이용한 상태진단 비교연구)

  • Kong, Changduk;Kang, MyoungCheol;Park, Gwanglim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.71-83
    • /
    • 2013
  • Recently, the advanced condition monitoring methods such as the model-based method and the artificial intelligent method have been applied to maximize the availability as well as to minimize the maintenance cost of the aircraft gas turbines. Among them the non-linear GPA(Gas Path Analysis) method and the GA(Genetic Algorithms) have lots of advantages to diagnose the engines compared to other advanced condition monitoring methods such as the linear GPA, fuzzy logic and neural networks. Therefore this work applies both the non-linear GPA and the GA to diagnose AE3007 turbofan engine for an aircraft, and in case of having sensor noise and bias it is confirmed that the GA is better than the GPA through the comparison of two methods.