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Abstract

This paper proposes an intuitive real-time robot control system using human body movement. Recently, it has been devel-
oped that motion generation for humanoid robots with reflecting human body movement, which is measured by a motion
capture. However, in the existing studies about robot control system by human body movement, the detailed structure
information of a robot, for example, degrees of freedom, the range of motion and forms, must be examined in order to
calculate inverse kinematics. In this study, we have proposed Associative Motion Generation as humanoid robot motion
generation method which does not need the detailed structure information. The associative motion generation system
is composed of two neural networks: nonlinear principal component analysis and Jordan recurrent neural network, and
the associative motion is generated with the following three steps. First, the system learns the correspondence relation-
ship between an indication and a motion using training data. Second, associative values are extracted for associating a
new motion from an unfamiliar indication using nonlinear principal component analysis. Last, the robot generates a new
motion through calculation by Jordan recurrent neural network using the associative values. In this paper, we propose a
real-time humanoid robot control system based on Associative Motion Generation, that enables user to control motion
intuitively by human body movement. Through the task processing and subjective evaluation experiments, we confirmed
the effective usability and affective evaluations of the proposed system.

Key Words: Humanoid Robot Control System, Human Body Movement, Kinect, Nonlinear Principal Component
Analysis, Jordan Recurrent Neural Network

1. Introduction

Research field in robotics has been advanced, and mu-
tual interaction between humans and robots are especially
researched [1]. Then, humanoid robots have been focused
and researched due to its effectiveness for user’s affection
and usability. Then, the robot can communicate with hu-
man using its motions: body language, gestures, eye con-
tact and so on [2]. And motion generation system reflecting
human body movement also has been developed for hu-
manoid robot, which is mostly measured by a motion cap-
ture.

It is thought that the robot motion generation using the
motion capture is superior to general controller such as a
joystick in providing anyone with intuitive and careful con-
trol of robot motions. However, for adapting the human
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body movement to humanoid robot motion, it is necessary
to consider the difference between human and robot: kine-
matics, self interference and so on. In the existing stud-
ies about robot control system by human body movement
[3, 4], the detailed structure information of the robot
(e.g., degrees of freedom, the range of motion and forms)
must be examined in order to calculate inverse kinematics.
Meanwhile, in our previous study, we proposed Associa-
tive Motion Generation (AMG) [5] as humanoid motion
generation method, which does not need detailed robot’s
structure information.

In this paper, we propose the real-time robot control sys-
tem based on AMG, that enables user to intuitively con-
trol humanoid robot motion by human body movement.
Figure 1 shows the general of the proposed system, and
this system works as the following procedures:

1. Observe human body movement by Kinect[6] and ex-
tract representative physical coordinate points.

2. By using AMG, control the robot motion from the ex-
tracted coordinate points.

In this paper, we focus on coordinates of both arms as
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Figure 1: General idea of the proposed system.

representative physical coordinate points, and construct the
robot control system to generate the motion of a robot’s up-
per body. Through the task processing and subjective eval-
uation experiments, we verify the effective usability and
affective evaluations of the proposed system.

2. Related Work

To achieve human like movement of the robot, Matsui
et al. [7] focused on not only robot’s joint angle but also
robot’s surface movement. And they proposed the motion
generation system for imitating the posture of the appear-
ance between the robot and human by using neural net-
work. However, their system assumed the joint structure of
robot resembling human being, thus it is difficult to apply
the system to various robots.

Kurihara et al. [8] considered the human body move-
ment to movement of some representative points, e.g., both
hands, both legs, trunk and head. They proposed the sys-
tem to convert an observed human body movement into a
natural motion of the robot by the inverse kinematics us-
ing constraint representation with the virtual link and the
singularity low-sensitive motion resolution. However, in
their system, the detailed structure information of the robot
must be examined in order to set the constraint representa-
tion. Thus, it is thought that their system is hard to use and
unfamiliar to public.

3. Associative Motion Generation (AMG)

Figure 2 shows general structure of the proposed system.
An indication is time sequence of coordinate values that the
robot obtains through a sensor. And it is defined as three-
dimensional coordinate values of the indicator’s both arms
in this paper.

In this study, the generated robot motion correspond-
ing to an indication is defined as a corresponding motion.

indication Associative Motion Generation

NLPCA

JRNN

associative 
value

motion

current state value

next state value
s(t+1)

p(t+1)

s(t)d(t+1)indicated 
value

M

D

Intuitive interface

Humanoid robot motion

Human body movement

Proposed System

Figure 2: General description of the proposed system.
NLPCA is connected with JRNN by an associative value,
and the system can generate the corresponding motion to
each indication.

AMG learns correlations between indications and the cor-
responding robot motions. For unfamiliar indication, AMG
associates the corresponding motion with the similarity be-
tween the indication and the learned indications, and newly
generates the motion. In fact, AMG has the following func-
tions for the unfamiliar indication:

1. Motion association: the system relates an indication
with the joint angles of the robot’s posture.

2. Motion generation: the system generates a motion
which is a time-series of posture.

AMG is composed of two kinds of neural networks: non-
linear principal component analysis (NLPCA) [9, 10] and
Jordan recurrent neural network (JRNN) [11]. NLPCA is
used for motion association, which is the five-layer sand-
glass neural network that has the function of the principal
component analysis with non-linear bases. By NLPCA, as-
sociative value is calculated with reflecting the similarity
between the given indication and the previously learned in-
dications, and the calculated value is used for the motion
generation. JRNN is used for motion generation, which
has feedback from the output layer to the input layer and
a property that the current output value influences the next
output value. Therefore, as the joint angle on each ∆t (t
means the minimum unit of robot motion) is used for in-
put and output, consecutive postures are obtained as output
vectors.

Figure 3 shows an overview of AMG. AMG has three
phases: learning, association and generation. In the learn-
ing phase, the robot learns indications and their corre-
sponding motions using training data, and the connection
weights of each network are updated. After the learning,
the indicator gives a new indication that the robot has not
experienced. In the association phase, the robot inputs the
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Figure 3: Overview of Associative Motion Generation.

new indication to NLPCA and extracts the associative val-
ues. In the generation phase, the motion corresponding to
the unfamiliar indication is associated and newly generated
by inputting the associative value to JRNN.

3.1 Learning Relationship Between Indica-
tion and Motion

NLPCA and JRNN learn the relationship between an in-
dication as input and a motion as output using training data:
pairs of an indication and its corresponding motion. The
connection weights of each network are updated using the
back-propagation algorithm [12].

3.1.1 Formulation of Associative Space

NLPCA learns an identity mapping that output d̂(t) is
approximated to input d(t) when the indicator gives an in-
dication D = [d(1), · · · ,d(T )] to the robot. The squared
error e(t) = ||d̂(t) − d(t)||2 is minimized by learning.
NLPCA acquires a function to extract the value represent-
ing a feature of the input from the input layer to the middle
layer because units of the middle layer are less than those
of the input layer. In this paper, we define the middle layer
of NLPCA as an association layer and its output at t as
associative value p(t) = (p1(t), . . . , pn(t))T. Moreover,
n-dimensional space in which associative values are plot-
ted is defined as associative space. The associative values
are calculated as follows:

p(t) = sig(w2sig(w1d(t))), (1)

where w1 and w2 are weight matrices between two layers
from the input layer to association layer and sig is the sig-
moidal function. If two arbitrary indication values d(i) and
d(j) are close to each other, two associative values p(i) and
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Figure 4: Learning phase.

p(j) will also be close by sigmoidal continuity in Equa-
tion (1). That is, topological relationships of input values
are maintained in the associative values. This continuity is
an effective property for recognizing the similarity of indi-
cations in the associative space. The learning by NLPCA is
shown in Figure 4(a). After this learning, associative values
P = [p(1), · · · ,p(T )] are extracted from each indication
D based on Equation (1).

3.1.2 Construction of Motion Generator

The inputs of JRNN are the associative values and joint
angles of the robot in a corresponding motion. JRNN has
feedback that inputs the previous output as partial units
of the input layer. The robot acquires the joint angles re-
taining time continuity because its next output posture de-
pends on the previous posture through the feedback. Con-
sequently, JRNN learns to predict the next joint angles
s(t + 1) on the basis of the input current joint angles s(t)
and next associative value p(t + 1). The squared error
er(t) = ||ŝ(t) − s(t)||2 is minimized by learning. The
predictive learning of JRNN is shown in Figure 4(b). By
this predictive learning, JRNN becomes an associative mo-
tion generator. The units to which the associative value is
input are called association layer.

3.2 Association and Motion Generation
When the indicator gives unfamiliar indication to the

robot, the robot generates a corresponding motion through
two phases: extracting the associative value using NLPCA
and generating the associative motion using JRNN.

3.2.1 Analogically-Based Associative Value

The left of Figure 5 presents the extraction of associative
values Punf from an unfamiliar indication Dunf that the
robot has not experienced. When the unfamiliar indication
Dunf = [dunf (1), · · · ,dunf (T )] is given to the robot, as-
sociative values Punf = [punf (1), · · · ,punf (T )] is ex-
tracted based on Equation (1). The similarity between the
unfamiliar indication and a learned one can be replaced by

123



International Journal of Fuzzy Logic and Intelligent Systems, vol. 12, no. 2, June 2012

unfamiliar 
indication

d
 unf

(1)

D unf

NLPCA

d
 unf

(T)

d
 unf

(T)

d
 unf

(1) t=0

t=T-1

JRNN

cs
unf

(0)

s
unf

(1)

s
unf

(T)

s
unf

(0)

M unf

new motion
s
unf

(T)

s
unf

(1)

t=0

t=T-1

constant 
value

s
unf

(T-1) s
unf

(T-1)

initial joint angle

associative values

P unf

p
 unf

(T)

p
 unf

(1)

association generation

Figure 5: Association phase (left) and generation phase
(right).

degrees of similarity with learned associative values in the
associative space of Punf . In this study, the robot gener-
ates the motion corresponding to a given unfamiliar indica-
tion Dunf by this property.

3.2.2 Generation of Corresponding Motion

The right of Figure 5 presents the generation of the new
motion Munf corresponding to the unfamiliar indication
Dunf . The corresponding motion to the unfamiliar indica-
tion is generated by repeating forward calculation of JRNN
using the series of associative values Punf as input of the
associative layer in JRNN. Joint angles of the next posture
sunf (t + 1) are obtained as output of JRNN by inputting
the current joint angles sunf (t) and the associative value
punf (t + 1) to produce the next posture. The joint angles
of the initial posture are given at t = 0. The following
calculation is repeated from 0 to T − 1.

sunf (t + 1)

=

{
f(sunf (t),punf (t+1), c) if t = 0
f(sunf (t),punf (t+1), sunf (t)) if 1≤ t≤T−1,

(2)

where f is the map function that JRNN acquired by learn-
ing, and its arguments are input to the input layer, associ-
ation layer, and context layer that receives feedback from
the output. c is a vector value constant at t = 0. The
series of joint angles Munf = [sunf (0), · · · , sunf (T )] is
acquired by this calculation. The corresponding motion to
the unfamiliar indication is Munf .

3.3 Related Methods
Aoyama et al. [13] used the clustering property of Self-

Organizing Map and aimed at generating the appropriate
output to the input that the robot had not learned. As a re-
sult, their robot acquired output voices imitating some un-
known input voices in a vocal imitation experiment. How-
ever, it could not generate an output motion corresponding

(a) coordinates of human body
movement.

(b) coordinates of robot motion.

Figure 6: Conversion of coordinates from human body
movement to robot motion (left arm).

to an unknown input in a motion imitation experiment. In
our method, the robot is able to generate a motion corre-
sponding to an indication unfamiliar to the robot because
we used associative values in which topological relation-
ships of input values are maintained for motion generation.
Moreover, it generated the motions that were not repre-
sented as a combination of learned motions by calculation
using the nonlinear function.

Lee et al. [14] proposed a method to associate whole
body motion of tool-usage from the trajectory of a tool that
a human was grasping by partial observation using Hidden
Markov Model (HMM). In this method, when their robot
observed an unknown tool trajectory, it selected the most
similar body motion knowledge from a database of learned
motion depending likelihood of HMM. However, genera-
tion of a new motion was not considered when an observed
tool trajectory was not similar to learned trajectories. In our
method, when the robot is given an unfamiliar indication,
it generates a new motion corresponding to the indication
by a motion generator that was constructed during a learn-
ing phase. The unfamiliar indication is quite different from
learned indications (see lower of Figure 10).

4. Intuitive Motion Generation

In this paper, we developed the intuitive interface with
Kinect to input the indication, that is human body move-
ment, into AMG (Kinect+AMG), Kinect is a motion cap-
ture device made by Microsoft, which has two RGB cam-
eras and a depth sensor which can obtain human forms and
gestures without any markers, and enables human to con-
trol operational objects by their body movement.

4.1 Indication Generation by Human Body
Movement

Figure 6(a) and Figure 6(b) each shows coordinate of the
human structure observed by Kinect and the robot structure
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Figure 7: Humanoid robot KHR-2HV, and its link model.

in AMG, respectively. In this paper, the range of indication
value is [0, 1] on AMG. Hence the human structure infor-
mation is converted to the indication by following equation,
and inputted into AMG.

p(t) = sig(rh(t)− rs(t)), (3)

where, p(t) shows the indication on the given time t, and
rh and rs each shows three-dimensional coordinate of both
human hands and shoulder, respectively. And sig shows
sigmoid function. The distance between hand and shoulder
is calculated and gap of human and robot structure is mini-
mized. Moreover, sigmoid function standardizes individual
differences such as a length of arms. These are applied to
both arms, and it enables anyone to operate both arms of
robot with their body movements. In fact, the purpose of
AMG is summarized as to achieve p(t) ; k(t), where, k
shows the coordinates of robot’s hand in AMG.

4.2 Real-time Motion Generation Demon-
stration

We conducted real-time motion generation demonstra-
tion with KHR-2HV (17 DOFs, 353×183[mm],1.27[kg])
as the operational humanoid robot to test the effectiveness
of our proposed system. KHR-2HV has three degrees of
freedom in each arm, and the arms are used for motion
(Figure 7). The coordinate system complied with the right-
hand rule based on the robot.

4.2.1 Experimental Setup

We set NLPCA have 3 units in its input/output layer, 2
units in its association layer, and 9 units in its hidden layer.
And the indication on the given time, which is converted
from the three-dimensional coordinate of human hand by
Equation (3), is inputted into NLPCA. We set JRNN have
6 units in its each input, output and context layer, 2 units in
its association layer, and 20 units in its middle layer. Input
values to JRNN are normalized, and the joint angles of the
robot’s arms become [0, 1]. The outputs of the association
layer of NLPCA are inputted into the one of JRNN.

(a) Vertical (b) Horizontal

Figure 8: Indicated trajectories in training data for
NLPCA.

0[sec] 0.27[sec] 0.54[sec] 0.81[sec] 1.08[sec]

1.35[sec] 1.62[sec] 1.89[sec] 2.16[sec]
(a) Vertical motion

0[sec] 0.27[sec] 0.54[sec] 0.81[sec] 1.08[sec]

1.35[sec] 1.62[sec] 1.89[sec] 2.16[sec]
(b) Horizontal motion

Figure 9: The corresponding motions in training data for
JRNN.

As the training data, we prepared the two pairs of indica-
tions and its corresponding motion: ‘Vertical’ and ‘Vertical
motion,’ and ‘Horizontal’ and ‘Horizontal motion.’ ‘Ver-
tical’ and ‘Vertical motion’ each shows the parallel trajec-
tories to the Z-axis and that robot moved its arms up and
down, respectively. ‘Horizontal’ and ‘Horizontal motion’
each shows the parallel trajectories to the Y-axis and that
robot moved its arms from left to right, respectively.

NLPCA was trained with indications. Three-
dimensional coordinate points are used as the indications
of the training data, and are shown in Figure 8. In Fig-
ure 8, the shape of a trajectory were represented on the Y-Z
plane, and the solid lines which are projected trajectories
are shown. The X-coordinate values of a trajectory were
random. JRNN was trained with corresponding motions.
The two types of the corresponding motions in the training
data are shown in Figure 9.
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0[sec] 0.8[sec] 1.6[sec] 2.4[sec] 3.2[sec] 4.0[sec] 4.8[sec] 5.6[sec]

Figure 10: Snapshots of demonstration.

(a) Circle

(b) Ellipse A (c) Ellipse B

Figure 11: Unfamiliar indications.

4.2.2 Generating New Motion from an Unfamiliar In-
dication

We conducted motion generation demonstration to ver-
ify whether the robot can generate motions corresponding
to unfamiliar indications in real-time or not. Figure 10
shows the snapshots of the human movement and the cor-
responding robot motion in the demonstration. Through
the demonstration, we confirmed that the humanoid robot
motion could be controlled by human body movement in
real-time.

4.3 Evaluation of Corresponding Motion
We conducted another experiment to verify whether dif-

ferences in indications were correctly reflected in the gen-
erated motions. The corresponding motions we evaluated
were generated from the following indications:

• Circle: a circular trajectory.

• Ellipse A: an elliptical trajectory whose minor axis
was 0.5 times the diameter of ‘Circle’.

• Ellipse B: an elliptical trajectory whose minor axis
was 0.8 times the diameter of ‘Circle’.

0[sec] 0.85[sec] 1.70[sec] 2.55[sec] 3.40[sec]

4.25[sec] 5.10[sec] 5.95[sec] 6.80[sec]
(a) Circular motion

0[sec] 0.85[sec] 1.70[sec] 2.55[sec] 3.40[sec]

4.25[sec] 5.10[sec] 5.95[sec] 6.80[sec]
(b) Ellipse A motion

0[sec] 0.85[sec] 1.70[sec] 2.55[sec] 3.40[sec]

4.25[sec] 5.10[sec] 5.95[sec] 6.80[sec]
(c) Ellipse B motion

Figure 12: Corresponding motions.

The centers of the indications were the same point as ‘Cir-
cle’ and their major axes were the same length as the diam-
eter of ‘Circle’. Their trajectories are shown in Figure 11.

Result. The generated corresponding motions from their
indications are shown in Figure 12. The tracks of the
robot’s left hand in generated corresponding motions are
shown in Figure 13. The tracks were plotted in the same
way as previously described, and the track of ‘Circular mo-
tion’ is included for comparison. The red-colored line rep-
resents ‘Circle’, the pink-colored line represents ‘Ellipse
A’, and the aqua-colored line represents ‘Ellipse B’. As can
be seen from Figure 13, the movement of the robot’s arm
became smaller in the order of ‘Circular motion’, ‘Ellipse
B motion’ and ‘Ellipse A motion’. The minor axis of indi-
cations ‘Ellipse A’ and ‘Ellipse B’ corresponded to the up-
and-down movement of the robot’s arm. Therefore, there
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Figure 13: Trajectories of left hand in motion: ‘Circular
motion’ (red), ‘Ellipse A motion’ (pink), and ‘Ellipse B
motion’ (aqua).

Table 1: Ratio of Minor Axis of Ellipse to Diameter of
Circle.

Ellipse A motion Ellipse B motion
0.63 0.87

were appropriate changes in the generated motions. Ta-
ble 1 presents the two ratios of the minor axes of ‘Ellipse
A motion’ and ‘Ellipse B motion’ to the Z-axial diameter
of ‘Circular motion’ in Figure 13. The ratios of the indica-
tions of ‘Ellipse A’ and ‘Ellipse B’ to ‘Circle’ were 0.5 and
0.8, respectively. Accordingly, we expected that the ratios
in the generated corresponding motions would be similar.
We can see from Table 1 that the robot reflected the differ-
ence of the indications in two generated motions within the
range that can be allowed.

5. Subjective Evaluation Experiment

To verify the availability of the proposed system, we
conducted two types of subjective evaluation experiment:
the effect on the operator’s affection, and the controllabil-
ity for humanoid robot motion. We compared the proposed
system with M-editor and Stick+AMG. Figure 14 shows
Graphical User Interface (GUI) of M-editor. In M-editor,
the robot motion is assumed as the time series of static be-
havior. The M-editor is the method that directly input the
each joint angle and transition time from a static behavior
to the next one. Stick+AMG is the method to use analog
stick shown in Figure 15 as input of AMG instead of the
human body movement.

Figure 14: GUI of M-editor.

Figure 15: Analog
stick.

vertical & horizontal triangle circle

Figure 16: Designated motion.

5.1 Designated Motion Generation Experi-
ment

We conducted the subjective evaluation experiment to
verify the effect on the operator’s affection. In the exper-
iment, eight males and females were participated. They
were asked to operate KHR-2HV with each interface in
random order as following steps, and evaluated the impres-
sions from the operating.

1. Listen to explanation of interface and how to operate
the robot.

2. Operate the robot as it moves in the designated mo-
tion, which is shown in Figure 16.

3. Evaluate impressions from the operating.

A participant evaluates all three interface in random or-
der. The fixed designated motion is used to unify the im-
pressions from the robot motion, and clarify the difference
between the impressions from each interface. We used the
Semantic Differential (SD) method [15] to evaluate impres-
sions for the prepared six pairs of adjectives on a scale of
one to seven, which are listed in Table 2.

Result. Figure 17 shows the average and the standard
error of the evaluation of all participants for each inter-
face. The parenthetical adjectives significantly deffer with
Tukey’s test [16] (5% significance level). As shown in
Figure 17, Kinect+AMG significantly gives positive im-
pressions to the participants for all adjectives in compar-
ison with M-editor. And in comparison with Stick+AMG,
Kinect+AMG significantly gives positive impressions in all
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Table 2: Prepared adjectives in the designated motion gen-
eration experiment.

Bright – Dark
Excitable – Calm

Boisterous – Lonely
Fulfilling – Boring

Pleasurable – Painful
Cheerful – Gloomy

M-editor

Stick+AMG

Kinect+AMG

Bright
Excit-

able

Boiste-

rous

Fulfill-

ing

Pleasur-

able

Cheer-

ful

Dark Calm Lonely Boring Painful Gloomy

means 5% significance

Figure 17: Subjective evaluation results in designated mo-
tion generation experiment.

adjectives except ‘Fulfilling.’ Therefore, it is confirmed
that the Kinect+AMG gives significantly effective influ-
ences on the psychology to the operator.

5.2 Task Processing Experiment
We conducted the subjective evaluation experiment to

verify the controllability of the proposed system. In the
experiment, sixteen males and females were participated.
They were asked to operate KHR-2HV and achieve block-
lifting task shown in Figure 18 with each interface in ran-
dom order, and evaluated the impressions. To evaluate im-
pressions, we also used the SD method for the prepared
six pairs of adjectives listed in Table 3. Figure 19 shows
a snapshot of the task processing experiment. The goal of
the block-lifting task is “grab the block on the front of the
robot with robot’s both hand, and lift it up to the robot’s
head height.”

Result. Average time to achieve a task of each interface
is shown in Table 4. As shown in Table 4, it was confirmed
that Kinect+AMG achieved the task in the shortest times.
M-editor took so long times because it needed to manually

Figure 18: Block lifting
task. Figure 19: Appearance of ex-

periment.

Table 3: Prepared adjectives in the task processing experi-
ment.

Good – Bad
Easily-handled – Hardly-handled

Intuitive – Non-intuitive
Affinitive – Non-affinitive

New – Old
Accustomed – Unaccustomed

set each joint angle of the robot.
Figure 20 shows the subjective evaluations of the each

interface after processing the task. The parenthetical ad-
jectives significantly deffer with Tukey’s test (1% signifi-
cance level). As shown in Figure 20, in comparison with
M-editor, both Stick+AMG and Kinect+AMG get more
positive impressions. In comparison with Stick+AMG,
Kinect+AMG significantly gets positive impressions in ad-
jectives ‘Intuitive’ and ‘Affinitive.’

The results suggested that the task was quickly processed
by the proposed system because the operators could intu-
itively control the robot by their body movement in real-
time; it seemed that the proposed system, in which the
robot was controlled like their own human bodies, provided
them with some positive impressions.

5.3 Summary of Experimental Result
As explained in section 3, AMG can operate the robot

without their detailed structure information. Through the
task processing and subjective evaluation experiments, it
was confirmed that the proposed system controlled the
robot intuitively, and gave significantly effective influences
on psychology to operators in real-time. From these re-
sults, it is suggested that the proposed system is useful as
a real-time humanoid robot control system, which does not
need any detailed robot structure information.

6. Conclusion and Future Works

In this paper, we proposed a real-time humanoid robot
control system reflecting human body movement. The sys-
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Table 4: Average time to achieve a task.
M-editor Stick+AMG Kinect+AMG

139.32[sec] 8.95[sec] 7.33[sec]

M-editor

Stick+AMG

Kinect+AMG

Good

Easily-

handled Intuitive

Affini-

tive New

Accus-

tomed

Bad Hardly-

handled

Non-in-

tuitive

Non-af-

finitive

Old Unaccus-

tomed

means 1% significance

Figure 20: Subjective evaluation results of interface in the
task processing experiment.

tem enables user to intuitively control the robot’s motion as
if the robot motion is human own body movement. In the
proposed system, AMG is used as the learning and gen-
eration mechanism. AMG can generate unfamiliar robot
motion from simple and few learning data, then AMG as-
sociates the inexperienced motion from the learned indica-
tions. That is to say, AMG can dynamically generate the
robot motion corresponding to user’s free body movement,
and it realizes intuitiveness on robot control.

Through task processing and subjective evaluation ex-
periments, we confirmed the effective usability and affec-
tive positive evaluations of the proposed system. In partic-
ular, the proposed system provided user with intuitiveness
and affinity on operation. Using the proposed system, it is
expected that the robot operation is not only just an oper-
ation but also entertainment because it was confirmed that
the proposed system impressed so many positive evalua-
tions through the experiment.

In this paper, the proposed system did not care the cen-
troid of the robot and the stability were not covered. Thus,
in the future, not only upper body but also whole body of
the robot will be under the control, and practical utility and
more freely robot control will be realized. Moreover the
three-dimensional motion can be realized as covering the
X-coordinate values, and it is expected that the robot can
perform the user’s movement more directly. And we will
test the proposed system with some other robot, and verify

its effectiveness and general versatility.
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